
J. Parallel Distrib. Comput. 67 (2007) 1270–1285
www.elsevier.com/locate/jpdc

Performance of memory reclamation for lockless synchronization�

Thomas E. Harta,∗,1, Paul E. McKenneyb, Angela Demke Browna, Jonathan Walpolec

aDepartment of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 2E4
bIBM Linux Technology Center, IBM Beaverton, Beaverton, OR 97006, USA

cDepartment of Computer Science, Portland State University, Portland, OR 97207-0751, USA

Received 1 July 2006; received in revised form 11 April 2007; accepted 25 April 2007
Available online 3 May 2007

Abstract

Achieving high performance for concurrent applications on modern multiprocessors remains challenging. Many programmers avoid locking
to improve performance, while others replace locks with non-blocking synchronization to protect against deadlock, priority inversion, and
convoying. In both cases, dynamic data structures that avoid locking require a memory reclamation scheme that reclaims elements once they
are no longer in use.

The performance of existing memory reclamation schemes has not been thoroughly evaluated. We conduct the first fair and comprehensive com-
parison of three recent schemes—quiescent-state-based reclamation, epoch-based reclamation, and hazard-pointer-based reclamation—using a
flexible microbenchmark. Our results show that there is no globally optimal scheme. When evaluating lockless synchronization, programmers
and algorithm designers should thus carefully consider the data structure, the workload, and the execution environment, each of which can
dramatically affect the memory reclamation performance.

We discuss the consequences of our results for programmers and algorithm designers. Finally, we describe the use of one scheme, quiescent-
state-based reclamation, in the context of an OS kernel—an execution environment which is well suited to this scheme.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Lockless; Non-blocking; Memory reclamation; Hazard pointers; Read-copy update; Synchronization; Concurrency; Performance

1. Introduction

As multiprocessors become mainstream, multithreaded ap-
plications will become more common, increasing the need for
efficient coordination of concurrent accesses to shared data
structures. Traditional locking requires expensive atomic op-
erations, such as compare-and-swap (CAS), even when locks
are uncontended. For example, acquiring and releasing an
uncontended spinlock requires over 400 cycles on an IBM®
POWER� CPU. Therefore, many researchers recommend
avoiding locking [3,10,28]. Some systems, such as the Linux�

� Portions of this paper appeared in the Proceedings of the 2006 Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2006).

∗ Corresponding author.
E-mail addresses: tomhart@cs.toronto.edu (T.E. Hart),

paulmck@us.ibm.com (P.E. McKenney), demke@cs.toronto.edu
(A.D. Brown), walpole@cs.pdx.edu (J. Walpole).

1 Supported by an NSERC Canada Graduate Scholarship.

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.04.010

kernel, use concurrently readable synchronization, which uses
locks for updates but not for reads. Locking is also susceptible
to priority inversion, convoying, deadlock, and blocking due to
thread failure [5,13], leading researchers to pursue non-blocking
(or lock-free) synchronization [9,15–17,19,39]. In some cases,
lock-free approaches can bring performance benefits [31]. For
clarity, we describe as lockless all synchronization strategies
which permit access to shared data without using locks.

A major challenge for lockless synchronization is handling
the read/reclaim races that arise in dynamic data structures.
Fig. 1 illustrates this problem. Threads T 1 and T 2 both hold
references to element a of a linked list, and T 1’s removal of
element a is concurrent with T 2’s read of a’s next field. The
memory occupied by removed elements must be reclaimed to
allow reuse, or memory exhaustion will eventually block all
threads; however, reclaiming a is unsafe while T 2 continues
referencing it, since after reclamation, a’s contents would no
longer be defined, and a’s next field might not be a valid pointer.
Thread T 2 could therefore crash or corrupt the contents of

http://www.elsevier.com/locate/jpdc
mailto:tomhart@cs.toronto.edu
mailto:paulmck@us.ibm.com
mailto:demke@cs.toronto.edu
mailto:walpole@cs.pdx.edu


T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1271

Fig. 1. Concurrent reading and writing causes read/reclaim races.

memory. The program or the system must somehow determine
when a can safely be reclaimed.

Reclamation is subsumed into automatic garbage collec-
tors in environments that provide them, such as Java� .
Provided the garbage collector is thread-safe, program-
mers using garbage-collected languages therefore need not
worry about read/reclaim races. However, for languages like
C, where memory must be explicitly reclaimed (e.g. via
free()), programmers must combine a memory reclamation
scheme with their lockless data structures to resolve these
read/reclaim races. Several such reclamation schemes have
been proposed.

Programmers need to understand the semantics and the per-
formance implications of each scheme, since the overhead of
inefficient reclamation can be worse than that of locking. For
example, reference counting [8,39] has high overhead in the
base case and scales poorly with data-structure size. This is un-
acceptable when performance is the motivation for lockless syn-
chronization. Unfortunately, there is no single optimal scheme,
and existing work is relatively silent on factors affecting recla-
mation performance.

We address this deficit by comparing three recent reclama-
tion schemes, showing the respective strengths and weaknesses
of each. In Sections 2 and 3, we review these schemes and de-
scribe factors affecting their performance. Section 4 explains
our experimental setup. Our analysis, in Section 5, reveals sub-
stantial performance differences between these schemes, the
greatest source of which is per-operation atomic instructions. In
Section 6, we discuss the relevance of our work to designers and
implementers. We show that lockless algorithms and reclama-
tion schemes are mostly independent, by combining a blocking
reclamation scheme and a non-blocking algorithm, then com-
paring this combination to a fully non-blocking equivalent. We
also present a new reclamation scheme that combines aspects
of two other schemes to give good performance and ease of
use. Section 7 describes the use of one of these memory recla-
mation schemes (QSBR) in the Linux kernel. We close with
a discussion of related work in Section 8 and summarize our
conclusions in Section 9.

2. Memory reclamation schemes

We examine four memory reclamation schemes: quiescent-
state-based reclamation (QSBR) [3,28], epoch-based recla-
mation (EBR) [9], hazard-pointer-based reclamation (HPBR)
[29,30], and lock-free reference counting (LFRC) [39,32]. In
this section, we provide an overview of each scheme to help
the reader understand our work.

Most of the functionality of each scheme is provided by a
library into which clients call. However, each scheme places
slightly different constraints on the calling code, leading to dif-
ferent interfaces to the respective libraries; hence, a developer
cannot simply recompile her application with a new reclama-
tion scheme, but must customize her code for each library’s
interface. These interfaces have different levels of complex-
ity, leading to trade-offs between reclamation performance and
coding difficulty. We elaborate on this point while discussing
each scheme.

2.1. Quiescent-state-based reclamation

QSBR and EBR reclaim memory once a grace period has
passed. A grace period is a time interval [a, b] such that, af-
ter time b, all elements removed before time a can safely be
reclaimed.

QSBR uses quiescent states to detect grace periods. A qui-
escent state for thread T is a state in which T holds no refer-
ences to shared elements—in particular, T holds no references
to any shared elements which have been removed from a lock-
less data structure. Any interval of time in which each thread
passes through at least one quiescent state is thus a grace pe-
riod for QSBR. Fig. 2 illustrates this relationship. Thread T 1
goes through quiescent states at times t1 and t5, T 2 at times t2
and t4, and T 3 at time t3. Hence, a grace period is any time
interval containing either [t1, t3] or [t3, t5].

Note that there is no requirement that QSBR implementa-
tions find the shortest grace periods possible. In Fig. 2, for
example, any interval containing [t1, t3] or [t3, t5] is a quies-
cent state; implementations which check for grace periods only
when threads enter quiescent states would detect [t1, t5], since
T 1’s two quiescent states form the only pair of quiescent states
from a single thread which enclose a grace period.

One convenient way to implement QSBR is with a fuzzy
barrier [14]. A barrier protects access to some code which no
thread should execute before all other threads finish some prior
stage of computation. In standard (non-fuzzy) barrier synchro-
nization, threads announce their entry into a barrier, and then
block until all threads have entered the barrier. In a fuzzy bar-
rier, instead of blocking, a thread which enters the barrier skips
the protected code and continues executing if some other thread
has not yet entered the barrier. The thread will again attempt
to execute the protected code upon subsequent fuzzy barrier
entries. For implementing QSBR, a thread can enter the bar-
rier when passing through a quiescent state; the protected code
performs the memory reclamation.

Fig. 2. Illustration of QSBR. Black boxes represent quiescent states.



1272 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

Applications must somehow indicate to the QSBR library
when quiescent states occur; however, the choice of quiescent
states is application-dependent. In general, a thread may declare
a quiescent state at any time when it has no references to any
shared data. In the trivial case, a thread could declare a quies-
cent state after every lockless operation, as shown in Listing 1;
however, it is often advantageous to declare quiescent states
less frequently. In our experiments, we declare quiescent states
by calling quiescent_state() at the end of our main
test loop, as shown in Listing 4 in Section 4. A thread which
calls quiescent_state() enters a fuzzy barrier. Calling
quiescent_state() at the end of the loop allows us to
amortize the cost of entering the fuzzy barrier across several
operations.

Listing 1 : Trivial example flagging of quiescent states with
QSBR.

1 void foo (struct list ∗ l, long key)
2 {
3 remove (l, key);
4 quiescent_state ();
5 }

Many operating system kernels contain natural quiescent
states. Linux uses QSBR to implement the read-copy up-
date (RCU) API [10,26,28]. Several choices of quiescent
state have been proposed in different QSBR implementations
[24, Section 4.3] in Linux. A classical example is voluntary
context switch. As another example, in parts of the Linux
kernel, writers flag quiescent states immediately after writes,
using the pattern shown in Listing 1, and then intentionally
block until a grace period has elapsed, in order to increase
maintainability and to reduce memory usage.

The standard model for reasoning about non-blocking syn-
chronization is that any thread may experience a fail-stop
failure at any time, and other threads cannot distinguish these
failures from long stalls. In this model, QSBR is blocking,
since failed threads will not go through quiescent states. Fig. 3
illustrates this problem. Thread T 2 is a failed thread; since it
has failed, it never goes through a quiescent state. By the defi-
nition of grace period, there are thus no grace periods in this
system. Since there are no grace periods, threads T 1 and T 3
will never be able to reclaim memory. As a result, the system
will eventually run out of memory, forcing T 1 and T 3 to block
forever on memory allocation. In principle, systems that can
detect thread failure might designate thread failure as an ex-
tended quiescent state; however, in practice, we are not aware
of any such implementation, and in theory, failure detectors
[7] are not a part of standard shared memory models.

Fig. 3. QSBR is inherently blocking.

2.2. Epoch-based reclamation

Fraser’s EBR [9], like QSBR, uses grace periods. EBR dif-
fers from QSBR in that QSBR relies on the programmer to
annotate the program with quiescent states, but EBR hides this
bookkeeping within the implementation of lockless operations.
The body of a lockless operation is termed a critical region.
Each thread sets a per-thread flag upon entry into a critical
region, indicating that the thread intends to locklessly access
shared data. The thread clears this flag at the end of the lock-
less operation. No thread is allowed to access an EBR-protected
object outside of a critical region. After some pre-determined
number of critical region entries, a thread attempts to enter a
fuzzy barrier and reclaim memory.

Listing 2 shows an example of the use of EBR in a search
of a linked list which allows lockless reads but uses locks for
updates. QSBR omits lines 5, 10, and 14, which handle EBR’s
epoch bookkeeping, but is otherwise identical; QSBR’s quies-
cent states are flagged explicitly by clients of the QSBR library,
as shown by the pseudocode in Listings 1 and 4.

Listing 2: EBR concurrently readable search.

1 int search (struct list ∗ l, long key)
2 {
3 element_t ∗ cur;
4 int cur_key;
5 critical_enter();
6 for (cur = l−>list_head;
7 cur != NULL; cur = cur−>next) {
8 cur_key = cur−>key;
9 if (cur−>_key >= key) {
10 critical_exit();
11 return (cur_key == key);
12 }
13 }
14 critical_exit();
15 return (0);
16 }

EBR gets its name from the epochs it uses to implement a
fuzzy barrier. Each thread executes in one of the three logical
epochs and may lag at most one epoch behind the global epoch.
Each epoch has an associated limbo list for elements awaiting
reclamation. Whenever a thread enters a new epoch, it accesses
the code protected by the fuzzy barrier and can safely reclaim
memory. Three epochs are needed because, as Fig. 4 illustrates,
a thread can execute in two epochs during a single global epoch,
hence populating two limbo lists.

Fig. 4 shows how EBR tracks epochs, allowing memory to
be reclaimed safely. When a thread enters a critical region, it
updates its local epoch to match the global epoch. After some
pre-determined number of critical region entries since changing
its local epoch, a thread will attempt to increment the global
epoch. This attempt will succeed only if the local epoch of each
thread in a critical region is equal to the global epoch; hence,
since threads update their local epochs only at the beginning
of a critical region, if the global epoch is e, threads in critical



T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1273

Fig. 4. Illustration of EBR. Thin solid lines show updates to a thread’s local
epoch, and thick solid lines show updates to both a local epoch and the
global epoch.

regions can be in either epoch e or e − 1, but not e + 1 (all
mod 3). Hence, when a thread T’s local epoch changes to e, all
lockless operations of other threads which were in progress the
last time T was in epoch e have completed—a grace period has
elapsed. The time period [t1, t2] in Fig. 4 is thus a grace period.

As with QSBR, reclamation can be stalled by failed threads;
however, unlike with QSBR, only threads that fail within critical
regions can stall EBR. EBR’s bookkeeping is invisible to the
application programmer, making it simple for a programmer
to use. Section 5 shows that this property imposes significant
overhead on EBR.

2.3. Hazard-pointer-based reclamation

Michael’s HPBR[29] scheme, sometimes called safe
memory reclamation (SMR), provides an existence locking
mechanism for dynamically allocated elements. Each thread
performing lockless operations has K hazard pointers which
it uses to protect elements from reclamation by other threads;
hence, if there are N threads, we have H = NK hazard point-
ers in total. K is data-structure-dependent, and often small.
Queues and linked lists need K = 2 hazard pointers, while
stacks require only K = 1; however, we know of no upper
bound on K for general tree or graph traversal algorithms.

After removing an element, a thread places that element in a
private list. When the list grows to a predefined size R, the thread
reclaims each removed element lacking a corresponding hazard
pointer. Increasing R amortizes reclamation overhead across
more elements, but increases memory usage; if R is bigger
than H by some amount proportional to H, written formally as
R = H + �(H), the amortized per-element processing time is
constant. Setting R to a positive integer multiple of H plus some
constant suffices. Furthermore, since every removed element
not protected by a hazard pointer can be reclaimed, at most H
of the removed elements can be unreclaimable.

Since each thread has K hazard pointers and can hold R re-
moved elements in its private list, a crashed thread can prevent
only K + R removed elements from being reclaimed. HPBR
thus bounds the amount of memory which can be occupied by
removed elements, even in the presence of thread failures. In
this sense, HPBR is non-blocking—memory held by removed
elements cannot grow arbitrarily and exhaust the system’s mem-
ory, which would otherwise cause threads to stall. This guar-
antee, however, assumes a finite number of threads and hazard
pointers.

An algorithm using HPBR must identify all hazardous
references—references to shared elements that may have been

Fig. 5. Illustration of HPBR.

removed by other threads or that are vulnerable to the ABA 2

problem [30]. Such references require hazard pointers. The
algorithm sets a hazard pointer, then checks for element re-
moval; if the element has not been removed, then its fields
may safely be accessed. As long as the hazard pointer refer-
ences the element, HPBR’s reclamation routine refrains from
reclaiming it. Fig. 5 illustrates the use of HPBR. Element a
has been removed from the linked list, but cannot be reclaimed
because T 2’s hazard pointer HP[2] references it.

Listing 3, showing code adapted from Michael [30], demon-
strates HPBR with a search algorithm corresponding to
Listing 2. At most two elements must be protected: the current
element and its predecessor (K = 2). The code removing ele-
ments, which are not shown here, use the low-order bit of the
next pointer as a flag. This guarantees that the validation step
on line 14 will fail and retry in case of concurrent removal.
Full details are given by Michael [30].

Listing 3: HPBR concurrently readable search.

1 int search (struct list ∗ l, long key)
2 {
3 element_t ∗∗ prev, ∗ cur, ∗ next;
4 / ∗ Index of our first hazard pointer. ∗ /
5 int base = getTID()∗ K;
6 / ∗ Offset into our hazard pointer segment. ∗ /
7 int off = 0;
8 try_again:
9 prev = &l−>list_head;
10 for (cur = ∗ prev; cur ! = NULL; cur = next & ∼ 1) {
11 / ∗ Protect cur with a hazard pointer. ∗ /
12 HP[base+off] = cur;
13 memory_fence();
14 if (∗ prev != cur)
15 goto try_again;
16 next = cur−>next;
17 if (cur−>key >= key)
18 return (cur−>key == key);
19 prev = &cur−>next;
20 off = (off+1)
21 }
22 return (0);
23 }

2 The ABA problem [20] occurs when we use CAS to update a data
structure. Suppose that p is an element in a linked data structure. If some
thread removes p and replaces it with p′, which uses the same memory
previously occupied by p, a concurrent CAS operation (for example, another
thread trying to remove p) will not be able to tell the difference between
p′ and p. This CAS operation could then succeed when it should fail (for
example, unintentionally removing p′).



1274 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

Provided that no lockless operation returns a reference to
an element, the changes needed for a program to use HPBR
are localized to the implementation of lockless operations, as
Listing 3 shows. If, however, a function returns a reference to
an element, a hazard pointer must protect this element during
the reference’s lifetime. Furthermore, applying HPBR to the
implementation of a lockless operation is often more compli-
cated than applying EBR, as can be seen by contrasting List-
ing 2 with 3.

Herlihy et al. [18] presented a very similar scheme called
Pass the Buck. Since this scheme’s per-operation costs are very
similar to those of HPBR, we believe that our HPBR results
apply to Pass the Buck as well.

2.4. Lock-free reference counting

LFRC is a well-known garbage-collection technique.
Threads track the number of references to elements, reclaiming
any element whose count is zero. Valois’ LFRC scheme [39]
(corrected by Michael and Scott [32]) uses CAS and fetch-
and-add (FAA), and requires elements to retain their type after
reclamation. Sundell’s scheme [37], based on Valois’, is wait-
free. The scheme of Detlefs et al. [8] allows elements’ types
to change upon reclamation, but requires double compare-and-
swap (DCAS), which no current CPU supports.

Although LFRC avoids locks, it does not bound the amount
of memory consumed by removed nodes like HPBR does—
Michael and Scott report easily running out of memory us-
ing Valois’ version of LFRC [32]. Furthermore, Michael [30]
showed that LFRC introduces overhead which often makes
lockless algorithms perform worse than lock-based versions.
We include some experiments with Valois’ scheme to repro-
duce Michael’s findings.

As with HPBR, only the implementations of lockless opera-
tions must be changed in order to support LFRC, provided these
operations do not return references to elements. Implementing
these changes is slightly more complex than for HPBR, since
the programmer must ensure that each reference count which is
incremented is later decremented; by contrast, if hazard point-
ers are reused on subsequent operations, it is not necessary to
explicitly unset them.

2.5. Summary

We consider QSBR, EBR, HPBR, and LFRC. For the con-
venience of the reader, we list these schemes, their associated
acronyms, and some basic characteristics of each in Table 1;

Table 1
Summary of memory reclamation schemes

Acronym Full name Characteristics

QSBR Quiescent-state-based reclamation Detects grace periods using application-dependent quiescent states
EBR Epoch-based reclamation Detects grace periods using application-independent epochs
HPBR Hazard-pointer-based reclamation Uses per-thread hazard pointers for existence locking
LFRC Lock-free reference-counting Uses per-element reference counts for existence locking
NEBR New epoch-based reclamation Introduced in Section 6.2

this list also includes new epoch-based reclamation (NEBR),
which we introduce in Section 6.2.

3. Reclamation performance factors

Several factors can affect the performance of memory recla-
mation schemes—memory consistency, workload, contention,
thread preemption, scheduling, and memory constraints. This
section explains these factors, which we vary experimentally
in Section 5.

3.1. Memory consistency

Current literature on lock-free algorithms generally assumes
a sequentially consistent [23] memory model, which prohibits
instruction reordering and globally orders memory references.
However, sequential consistency precludes many hardware and
compiler performance optimizations which are possible when
using a weaker memory consistency model [1]. Since most
codes does not require sequential consistency, modern CPUs
enforce sequential consistency only when needed by having
programmers use special fence instructions (also called memory
barriers). Although fences are often omitted from pseudocode,
they are expensive on most modern CPUs and must be included
in realistic performance analyses.

The schemes we consider require different numbers of fence
instructions. HPBR, EBR, and LFRC require per-operation
fences, while QSBR does not. HPBR, as shown in Listing 3,
requires a fence between hazard-pointer setting and validation,
thus one fence per visited element. LFRC also requires per-
element fences, in addition to the atomic instructions needed to
maintain reference counts. EBR requires two fences per oper-
ation: one when setting a flag when entering a critical region,
and one when clearing it upon exit. QSBR has no per-operation
code to manage quiescent states, so no per-operation fences are
required. As we show in Section 5, this lack of per-operation
fences enables QSBR to have very low per-operation overhead
in many cases.

3.2. Workload, contention, and scheduling

Data structures differ in both the operations they provide
and in their common workloads. Queues are update-only, but
linked lists and hash tables are often read mostly [24]. Schemes
which do not bound memory usage may perform poorly with
update-heavy structures, since the risk of memory exhaustion is
higher. Conversely, schemes which require per-element fences



T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1275

may perform poorly with operations which must visit many
elements, such as list or tree traversal.

We expect contention due to concurrent threads to be a minor
source of reclamation overhead; however, for HPBR and LFRC,
it could be unbounded in degenerate cases. Readers using these
schemes may have to restart their traversals due to interference
from concurrent writes—for example, as shown in lines 14
and 15 of Listing 3. Readers forced to repeatedly restart their
traversals must repeatedly execute fence instructions for every
element. These degenerate cases are more likely when there are
many threads and the workload is update-heavy.

When the number of threads exceeds the number of proces-
sors, threads will be preempted. Preemption can adversely af-
fect schemes which rely on grace periods—descheduled threads
will not go through quiescent states or update their local epochs,
and can thus delay reclamation, potentially exhausting memory.
This risk of memory exhaustion is greatest with update-heavy
workloads. Longer scheduling quanta may increase the risk of
this exhaustion.

3.3. Memory constraints

Typically, a multi-threaded memory allocator will give each
thread a local pool of memory; threads that exhaust their local
pools replenish them from a global pool [4,6]. Using local
pools reduces contention on the global pool. Although lock-
free memory allocators exist [31], many allocators protect the
global pool using locking.

If an allocator uses locking, schemes which do not bound
memory usage may see greater lock contention due to having
to access the lock-protected global pool more frequently. Fur-
thermore, if a thread is preempted while holding such a lock,
other threads will block on memory allocation. The size of the
global pool is finite and governs the likelihood of memory ex-
haustion. Only HPBR [29] provides a provable bound on the
amount of unreclaimed memory; it should thus be less sensitive
to these constraints.

4. Experimental setup

We evaluated the memory reclamation strategies with re-
spect to the factors outlined in Section 3 using commodity
SMP systems with IBM POWER CPUs. Table 2 shows the
characteristics of the two machines we used; the last line
of this table gives the combined costs of locking and then
unlocking a spinlock. The code for our experiments is avail-
able at http://www.cs.toronto.edu/∼tomhart/
perflab/ipdps06.tgz.

In our tests, a parent thread creates N child threads, starts a
timer, and stops the threads upon timer expiry. Child threads
count the number of operations they perform, and the parent
then calculates the average execution time per operation by di-
viding the duration of the test by the total number of opera-
tions. The CPU time is the execution time multiplied by the
number of threads. Provided that the threads do not outnum-
ber the CPUs, CPU time compensates for increasing numbers
of CPUs, allowing us to focus on synchronization overhead.

Table 2
Characteristics of machines

XServe IBM Power

CPUs 2x 2.0 GHz PowerPC G5 8x 1.45 GHz Power4+
Kernel Linux 2.6.8-1.ydl.7g5-smp Linux 2.6.13 (kernel.org)
Fence 78 ns (156 cycles) 76 ns (110 cycles)
CAS 52 ns (104 cycles) 59 ns (86 cycles)
Lock 231 ns (462 cycles) 243 ns (352 cycles)

In our results, we report execution time when there are more
threads than CPUs, and CPU time otherwise. We average our
times over five trials.

In each trial, each thread runs repeatedly through the test
loop shown in Listing 4 until the timer expires. QSBR tests
place a quiescent state at the end of the loop. The probabilities
of inserting and removing elements are equal, keeping data-
structure size roughly constant throughout a given run.

Listing 4: Per-thread test pseudocode.

1 while (parent’s timer has not expired) {
2 for i from 1 to OPS_PER_LOOP do {
3 key = random key;
4 op = random operation;
5 d = data structure;
6 op(d, key);
7 }
8 if (using QSBR)
9 quiescent_state();
10 }

We tested the reclamation schemes on linked lists and queues.
We used Michael’s ordered lock-free linked list, which forbids
duplicate keys, and Michael and Scott’s lock-free queue. These
data structures are known to work with HPBR and have been
previously evaluated with that technique [30]; choosing these
data structures makes our work more easily comparable with
this prior work. We coded our concurrently readable lists simi-
larly to the lock-free lists. Linked lists permit arbitrary lengths
and read-to-update ratios, so we used them heavily in our ex-
periments. Queues allow evaluating QSBR on an update-only
data structure, which no prior studies have done.

The tests allow us to vary the number of threads and the total
number of elements with which the experiment begins. When
using linked lists, we are also able to specify the ratio of reads
to updates.

QSBR, EBR, and HPBR all have parameters which affect
the frequency of reclamation; we attempted to choose these pa-
rameters such that the schemes performed well and reclaimed
memory with comparable frequency. These factors include the
number of operations per quiescent state, the frequency with
which threads using EBR attempt to update the global epoch,
and the frequency with which threads using HPBR attempt
to reclaim memory. We chose these parameters so as not to
bias our experiments against any scheme. As shown in List-
ing 4, each thread performs OPS_PER_LOOP operations per
quiescent state; hence, grace-period-related overhead is amor-
tized across OPS_PER_LOOP operations. We set the value of
OPS_PER_LOOP to 100 in our experiments. For EBR, each op

http://www.cs.toronto.edu/ tomhart/perflab/ipdps06.tgz
http://www.cs.toronto.edu/ tomhart/perflab/ipdps06.tgz


1276 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

in Listing 4 is a critical region; a thread attempts to update the
global epoch whenever it has entered a critical region 100 times
since the last update, again amortizing grace-period-related
overhead across 100 operations. For HPBR, we amortized recla-
mation overhead over R=2H+100 element removals.

Both QSBR and EBR require a fuzzy barrier algorithm; how-
ever, measuring the performance and scalability of different
barrier algorithms is not our goal. We therefore chose to use
EBR’s fuzzy barrier algorithm for both our QSBR and EBR im-
plementations. We experimented with other barrier algorithms
and found that this one had low overhead and scaled well. In
principle, we could use other fuzzy barrier algorithms for each
scheme while maintaining the same programming interface.

Our memory allocator is similar to that of Bonwick [6]:
each thread has two freelists of up to 100 elements each and
can acquire more memory from a global non-blocking stack of
freelists. This non-blocking allocator allowed us to study recla-
mation performance without considering pathological locking
conditions discussed in Section 3.3.

The threads in our experiment were processes, created us-
ing fork(). We implemented CAS using POWER’s LL/SC
instructions (larx and stcx), and fences using the eieio
instruction. Our spinlocks were implemented using CAS and
fences. Our locks used exponential backoff [2], implemented
using busy waiting, upon encountering conflicts, as did all our
lockless algorithms.

4.1. Limitations of experiment

Microbenchmarks are never perfect [22]; however, they allow
us to study reclamation performance by varying each of the
factors outlined in Section 3 independently. Our results show
that these factors significantly affect reclamation performance.
In macrobenchmark experiments, it is more difficult to gain
insight into the causes of performance differences, and to test
the schemes comprehensively.

Some applications may not have natural quiescent states; fur-
thermore, detecting quiescent states in other applications may
be more expensive than it is in our experiments. Our QSBR im-
plementation, for example, is faster than that used in the Linux
kernel, due to the latter’s need to support dynamic insertion and
removal of CPUs, interrupt handlers, and real-time workloads.

Our HPBR experiments statically allocate hazard pointers.
Although this is sufficient for our experiments, some algo-
rithms, to the best of our knowledge, require unbounded num-
bers of hazard pointers.

We believe that, despite the above limitations, our experi-
ments thoroughly evaluate these memory reclamation schemes
and show when each scheme is and is not efficient. In Section 7,
we describe experiments with one scheme, QSBR, in the con-
text of the Linux kernel and show that these macrobenchmark
results are consistent with the predictions of our microbench-
mark.

5. Performance analysis

We first investigate the base costs for the reclamation
schemes: single-threaded execution on small data structures.

We then show how workload, list traversal length, number of
threads, and preemption affect the performance.

5.1. Base costs

We first measure the costs of these schemes without the costs
associated with contention, preemption, or traversing long lists;
this represents the best-case performance of these schemes.
Fig.6 shows the single-threaded base costs of these schemes
on non-blocking queues and single-element linked lists with
no preemption or contention. We note that in a well-designed
system, contention should usually be low—good best-case per-
formance is thus highly desirable.

For the purposes of comparison, we show how these lock-
less algorithms, with the support of the different reclamation
schemes, compare with simple spinlock-based alternatives in
the base case. These data are presented only to show that the
lockless schemes are competitive: our goal is to compare differ-
ent memory reclamation schemes, not to compare lock-based
algorithms to lockless ones, or to compare different types of
locks. We therefore limit our experiments to lockless synchro-
nization for the evaluation in this section.

We ran LFRC only on read-only workloads; these were suf-
ficient for us to corroborate Michael’s [30] result that LFRC
performs poorly.

In these base cases, the dominant influence on the per-
formance is per-operation atomic instructions: CAS, FAA,
and fences make LFRC much more expensive than the other
schemes. Since EBR requires two fences per operation (when
calling critical_enter() and critical_exit(),
respectively), and HPBR requires one for most operations con-
sidered here, EBR is usually the next most expensive. QSBR,
needing no per-operation atomic instructions, is the cheapest
scheme in the base case.

Workload affects the performance of these schemes. Under
an update-intensive workload, a significant number of opera-
tions will involve removing elements; for each attempt to re-
claim a removed element, HPBR must search the array of haz-
ard pointers. This overhead can become significant for update-
intensive workloads, as can be seen in Fig. 6: HPBR per-
forms best for the read-only linked lists and worst for the

Fig. 6. Base costs—single-threaded data from 8-CPU machine. Y -axis shows
CPU time, defined as the average per-operation execution time multiplied by
the number of threads.



T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1277

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

A
v
g
 C

P
U

 T
im

e
 (

n
s
)

Update Fraction

HPBR

QSBR

EBR

Fig. 7. Lock-free list, one thread, one element, 8-CPUs, varying workload.

update-only queues. HPBR’s performance for the update-only
linked lists is intermediate—list removals fail when a matching
key is not found in the list, and therefore do not result in an
element needing reclamation, and therefore do not result in
an element needing reclamation. Reclamation overhead is thus
amortized across more operations compared to the update-only
queue case, in which dequeue operations fail only when the
queue is empty.

5.2. Scalability with workload

Fig. 6 shows us how the reclamation schemes perform with
read-only and update-only workloads. Using linked lists allows
us to see how the schemes perform with intermediate read-to-
update ratios. Fig. 7 shows the schemes’ performance as we
gradually increase the read-to-update ratio from read-only to
update-only on a single-threaded workload. QSBR and EBR
exhibit almost the same slope. HPBR, however, experiences a
slight increase in overhead as the update fraction increases. As
noted above, this is due to the fact that HPBR has to perform
additional processing each time it reclaims a removed element.
Since this increase is small, we conclude that workload, in
isolation, is a minor factor in reclamation performance.

5.3. Scalability with traversal length

Fig. 8 shows the effect of list length on a single-threaded
read-only workload. We observed similar results in update-only
workloads. As expected, per-element fence instructions degrade
HPBR’s performance on long chains of elements; QSBR and
EBR do much better.

Fig. 9 shows the same scenario, but also includes LFRC. At
best, LFRC takes more than twice as long as the next slowest
scheme, and the performance gap rapidly increases with the
list length due to the multiple per-element atomic instructions.
Because LFRC is always the worst scheme in terms of perfor-
mance, we do not consider it further.

5.4. Scalability with threads

Concurrent performance is an obvious concern for memory
reclamation schemes. We study the effect of threads sharing

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100

A
v
g
 C

P
U

 T
im

e
 (

n
s
)

Number of Elements

HPBR
QSBR
EBR

Fig. 8. Effect of traversal length—read-only lock-free list, one thread, 8 CPUs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100

A
v
g

 C
P

U
 T

im
e

 (
n

s
)

Number of Elements

HPBR
QSBR
EBR
LFRC

Fig. 9. Effect of traversal length, including LFRC—read-only lock-free list,
one thread, 8 CPUs.

the data structure when there is no CPU contention, and when
threads must also compete for the CPU.

5.4.1. No preemption
When we attempted to run eight non-real-time processes si-

multaneously on our 8-CPU machine, we experienced the ef-
fects of preemption, which we examine in the next subsection.
To reduce the risk of preemption and the other effects of CPU
contention, such as thread migration, we use a maximum of
seven threads, ensuring that one CPU is available for other pro-
cesses, following Fraser [9]. We could have instead prevented
preemption by running our threads with real-time priority. We
ran limited tests to confirm that doing so prevents preemption
and its associated effects on performance; however, since the
scheduler could have other effects on performance, we chose
to simply keep a CPU free instead.

Figs. 10 and 11 show the performance of the reclamation
schemes with a read-only workload on a linked list, and with
an update-only workload on a queue, respectively. All three
schemes scale almost linearly in the read-only case. In the
update-only case shown in Fig. 11, we see increased overhead
in all cases because multiple threads are trying to update a sin-
gle queue; since hazard pointers have to be re-set when a thread
restarts an operation, HPBR becomes slightly worse when con-
tention is high. Aside from this minor increase, the schemes’



1278 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

A
v
g

 C
P

U
 T

im
e

 (
n

s
)

Number of Threads

HPBR
QSBR
EBR

Fig. 10. Effect of adding threads—read-only lock-free list, one element, 8
CPUs.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7

A
v
g

 C
P

U
 T

im
e

 (
n

s
)

Number of Threads

HPBR
QSBR
EBR

Fig. 11. Effect of adding threads—lock-free queue, 8 CPUs.

relative performance is largely unaffected by the number of
threads, regardless of whether the workload is read-only or
update-only.

5.4.2. With preemption
To evaluate the performance of the reclamation schemes un-

der preemption, we ran our tests on our 2-CPU machine, vary-
ing the number of threads from 1 to 32.

Fig. 12 shows the performance of the schemes on a one-
element lock-free linked list with a read-only workload. This
case eliminates reclamation overhead, focusing solely on read-
side and fuzzy barrier overhead. In this case, the algorithms all
scale well, with QSBR remaining the most efficient.

For the update-heavy workloads, such as the update-only
queue shown in Fig. 13, HPBR performs best. Preempted
threads slow down threads using QSBR or EBR, since their
failure to go through quiescent states in a timely manner will
result in memory exhaustion, leading to allocation failures.
We note that HPBR performs best even when the number
of threads is equal to the number of CPUs—this is because,
when the number of threads and CPUs are equal, other system
threads may preempt our threads, as discussed in the previous
subsection.

In the above experiments, threads using QSBR or EBR yield
the processor on allocation failure using sched_yield(),

0

50

100

150

200

250

300

5 10 15 20 25 30

A
v
g

 E
x
e

c
u

ti
o

n
 T

im
e

 (
n

s
)

Number of Threads

HPBR
QSBR
EBR

Fig. 12. Effect of preemption—read-only lock-free list, 2 CPUs.

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30

A
v
g
 E

x
e
c
u
ti
o
n
 T

im
e
 (

n
s
)

Number of Threads

HPBR
QSBR
EBR

Fig. 13. Effect of preemption—lock-free queue, 2 CPUs.

since preempted threads must run in order for grace periods to
occur and thus for memory to be reclaimed. Yielding the proces-
sor upon allocation failure is a necessary condition for QSBR
and EBR to have acceptable performance under an update-
heavy workload with preemption. Fig. 14 shows the same test
as Fig. 13, but with busy-waiting upon allocation failure. Here,
HPBR performs well, but EBR and QSBR quickly exhaust the
pool of free memory. Each thread spins waiting for more mem-
ory to become free, thereby further preventing grace periods
from completing in a timely manner and hence delaying mem-
ory reclamation.

Although busy waiting on allocation failure would be a poor
design choice in an application using grace periods for memory
reclamation, this test demonstrates that preemption and update-
heavy workloads can cause QSBR and EBR to exhaust all mem-
ory. In situations in which grace periods are not achieved in
a timely manner, HPBR’s bounds on unfreed memory become
valuable.

5.5. Summary

The performance of the different memory reclamation
schemes is often comparable, as in Figs. 11 and 12; how-
ever, in degenerate cases, reclamation overhead can dominate
execution time, as in Figs. 9 and 14. Programmers must



T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1279

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30 35

A
v
g

 E
x
e

c
u

ti
o

n
 T

im
e

 (
n

s
)

Number of Threads

HPBR

QSBR

EBR

Fig. 14. Effect of busy waiting when out of memory—lock-free queue, 2
CPUs.

therefore understand the tradeoffs between the schemes in order
to ensure good performance.

In the base case, atomic instructions such as fences are the
dominant cost. The overhead due to factors such as entering and
exiting a fuzzy barrier or scanning an array of hazard pointers
is minor, and only affects the performance noticeably in the
case of the queue results in Fig. 6.

HPBR and LFRC require per-element atomic instructions.
Since these atomic instructions are expensive, HPBR and LFRC
perform poorly when long chains of elements must be traversed.
In the case of LFRC, the need for atomic increments is inherent,
and in the case of HPBR, the need for fences is a consequence of
the weakly consistent memory models on modern processors.

QSBR and EBR depend on grace periods occurring suffi-
ciently often. If grace periods are stalled—for example, due to
preemption—and the workload is update-heavy, these schemes
may exhaust memory. In our experience, the impact of this
problem can be reduced by yielding the processor on allocation
failure; experience with the Linux kernel also suggests that this
problem can be mitigated in practice [34].

6. Consequences and discussion

We describe the consequences of our analysis for comparing
algorithms, designing new reclamation schemes, and choosing
reclamation schemes for applications. We also discuss factors
other than performance which affect the choice of memory
reclamation scheme. Finally, we present system-level perfor-
mance results obtained from the Linux kernel.

6.1. Fair evaluation of algorithms

Reclamation schemes have profound performance effects
that must be accounted for when experimentally evaluating new
lockless algorithms.

Fig. 15 shows one of our early, faulty experiments, per-
formed prior to the evaluation in Section 5; it plots CPU time
against update fraction for a 10-element list. The goal of this
experiment was to compare the performance of a lock-free
linked list with HPBR (LF-HPBR) with a concurrently readable

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

A
v
g

 C
P

U
 T

im
e

 (
n

s
)

Update Fraction

LF-HPBR
LF-QSBR
CR-QSBR

Fig. 15. Lock-free (LF) versus concurrently readable (CR) algo-
rithms—10-element lists, one thread, 8 CPUs.

equivalent using QSBR (CR-QSBR). Concurrently readable al-
gorithms have lockless reads but use locks for updates; such
algorithms are used with QSBR in the Linux kernel. The mo-
tivation for these pairings was to compare a combination with
strong fault-tolerance guarantees—a thread cannot hold a lock
indefinitely or stop other threads from reclaiming memory—
with a combination lacking these guarantees. Our intuition was
that lock-free algorithms might pay a performance penalty for
these fault-tolerance properties.

We initially performed this experiment with only the LF-
HPBR and CR-QSBR traces shown in Fig. 15. Since these
traces never cross, our original experiment led us to the erro-
neous conclusion that the concurrently readable algorithm is al-
ways faster. A better analysis also performs the experiment with
LF-QSBR, noting that as the update fraction increases, lock-
free performance improves relative to the concurrently readable
approach, since its updates require fewer atomic instructions
than does locking. For update fractions above roughly 75%
LF-QSBR achieves the best performance. The large gap be-
tween the LF-HPBR and CR-QSBR traces is not due to the
difference between lock-free and concurrently readable linked
lists, but the fact that HPBR requires per-element fences, and
this list has 10 elements. This example shows that one can ac-
curately compare two lockless algorithms only when each is
using the same reclamation scheme.

The lock-free linked list performs some per-element checks
which the concurrently readable list does not, independent of
which reclamation scheme is used. Since the list in Fig. 15
has 10 elements, these checks impose significant overhead.
The lock-free linked list is thus more appealing when fewer
elements must be traversed. Fig. 16 shows the performance
of hash tables being concurrently accessed by four threads.
The hash table consists of arrays of LF-QSBR or CR-QSBR
single-element lists, using the same list algorithms as in
Fig. 15. For clarity, we omit HPBR from this graph—our intent
is to compare the lock-free and concurrently readable algo-
rithms using a common reclamation scheme. Here, since there
are fewer elements on which to perform checks, the lock-free
algorithm that out-performs the concurrently readable alterna-
tive for update fractions above about 20%. Lock-free lists and



1280 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

A
v
g
 C

P
U

 T
im

e
 (

n
s
)

Update Fraction

LF-QSBR

CR-QSBR

Fig. 16. Lock-free (LF) versus concurrently readable (CR) algorithms—hash
tables with load factor 1, four threads, 8 CPUs.

hash tables might therefore be practical for update-heavy sit-
uations in environments providing QSBR, such as OS kernels
like Linux.

New reclamation schemes should also be evaluated by vary-
ing each of the factors that can affect their performance. For
example, Gidenstam et al. [11] proposed a new non-blocking
reclamation scheme that combines reference counting with
HPBR, and can be proven to have several attractive proper-
ties. However, like HPBR and reference counting, it requires
expensive per-element atomic operations. The evaluation of
this scheme consisted only of experiments on double-ended
queues, thus failing to evaluate scalability with data-structure
size, a weakness of HPBR. This failing shows the value of our
analysis: it is necessary to vary the experimental parameters
we considered to gain a full understanding of a given scheme’s
performance.

6.2. Improving reclamation performance

Improved reclamation schemes can be designed based on an
understanding of the factors that affect the performance. For
example, we observe that a key difference between QSBR and
EBR is the per-operation overhead of EBR’s two fences which
it requires when entering and leaving a critical region. This
observation allows us to make a modest improvement to EBR
called NEBR.

NEBR requires compromising EBR’s application-indepen-
dence. Instead of setting and clearing a flag at the start and end
of every lockless operation, we set it at the application level
before entering any code that might contain NEBR critical re-
gions. Since our flag is set and cleared at the application level,
we can amortize the overhead of the corresponding fence in-
structions over a larger number of operations. We reran the ex-
periment shown in Fig. 10, but including NEBR, and, as shown
in Fig. 17, found that NEBR scaled linearly and performed
slightly better than did HPBR.

Furthermore, NEBR does not need the expensive per-
element atomic operations that ruin HPBR’s performance for
long traversals. NEBR’s overhead relative to QSBR can be
attributed to its need to attempt to check and update epochs
when starting a lockless operation.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

A
v
g
 C

P
U

 T
im

e
 (

n
s
)

Number of Threads

HPBR
QSBR
EBR
NEBR

Fig. 17. Performance of NEBR—lock-free list, 8 CPUs, read-only workload,
variable number of threads.

NEBR is attractive because its overhead is close to that of
QSBR, but it simplifies the job of an application programmer.
With QSBR, a programmer must identify an appropriate set of
quiescent states in the application code, and mark them. With
NEBR, the programmer’s job is simplified to marking only
the beginning and end of regions of the application code in
which lockless calls are made; updating the global epoch is
still periodically attempted after some fixed number of lockless
operations. Interestingly, recent real-time variants of the Linux-
kernel RCU also dispense with quiescent states [27]. Ongoing
work is expected to substantially reduce real-time RCU read-
side overhead.

There are many opportunities for future work in the area of
memory reclamation. Our recommendation that threads using
QSBR or EBR yield the CPU on allocation failure is simi-
lar in spirit to the idea of scheduler-conscious synchronization
[21]. It may be possible to further apply the ideas of scheduler-
conscious synchronization to create a user-level QSBR imple-
mentation with less overhead or a lower memory footprint than
the one used in our experiments.

HPBR requires per-element fences on any machine with a
weakly consistent memory model. A scheme which avoids per-
element atomic instructions yet still makes some guarantees
about memory usage would be a desirable technique. Creating
such a scheme, and formalizing what progress guarantees it
makes, is an interesting challenge.

We note that it is possible to combine aspects of different
reclamation schemes. Seigh [35] has proposed a scheme which
combines HPBR with QSBR in an attempt to get good flexi-
bility and performance.

6.3. Blocking memory reclamation for non-blocking data
structures

Schemes relying on grace periods are blocking in the sense
that if grace periods do not happen, the system will run out
of memory, and threads will fail to make progress. We have
shown that non-blocking data structures often perform better
when using these blocking schemes than they do with HPBR,
which is non-blocking. One might question why one would
want to use a non-blocking data structure in this case, since
a halted thread would cause an infinite memory leak, thus



T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1281

destroying the non-blocking data structure’s fault-tolerance
guarantees.

However, non-blocking data structures are often used for
reasons other than fault-tolerance; for example, Qprof [5] and
Cache Kernel [13] both use such structures because they can
be accessed from signal handlers without risk of self-deadlock.
Blocking memory reclamation does not remove this bene-
fit. In fact, Cache Kernel uses a blocking implementation of
type-stable memory to guard against read-reclamation races; its
implementation [12] has similarities to QSBR. Non-blocking
algorithms with blocking reclamation schemes similarly con-
tinue to benefit from resistance to preemption-induced con-
voying and priority inversion.

We view combining a non-blocking algorithm with a block-
ing reclamation scheme as part of a trend toward weakened
non-blocking properties [5,19], designed to preserve selected
advantages of non-blocking synchronization while improving
performance. In this case, threads have all the advantages of
non-blocking synchronization, unless the system runs out of
memory.

Conversely, one may also use non-blocking reclamation with
blocking algorithms to reduce the amount of memory awaiting
reclamation in the face of preempted or failed threads.

6.4. Non-performance factors

Although we have analyzed memory reclamation schemes
purely from a performance standpoint, performance is not the
only factor to consider when choosing a memory reclamation
scheme. The schemes have slightly different semantics which
may make one scheme or another more attractive for a particular
application.

Reference counting, for its part, has well-known difficulties
in dealing with cyclic garbage [11]. However, it has the advan-
tage that elements can be accessed after having been removed
from a shared data structure; this feature was exploited by Sun-
dell and Tsigas [36,38] to let threads accessing a doubly linked
list avoid restarting their traversals when elements are removed.

Identifying appropriate quiescent states in an application may
not be straightforward [30]; furthermore, choosing inappropri-
ate quiescent states may have unforeseen consequences. Sarma
and McKenney [34] discussed how the use of QSBR in the
Linux kernel’s IPv4 route cache introduced the possibility of
denial-of-service (DoS) attacks. By sending a large number of
packets to a machine, an attacker could force the victim to
spend all its time in interrupt handlers, which had no quiescent
states in older versions of Linux. The attacker could thus indef-
initely extend grace periods, resulting in unbounded memory
consumption that would eventually cause the system to hang.
Enhancements to Linux’s QSBR infrastructure now provide a
new set of quiescent states for use in interrupt handlers that
can prevent such attacks from indefinitely extending grace pe-
riods. It is an open question, however, whether Linux’s QSBR
infrastructure can be formally proven to be robust in the face
of arbitrary DoS attacks.

As noted in Section 2.3, some algorithms may require an un-
bounded number of hazard pointers; this requirement stymied

an attempt to use hazard pointers in Linux to improve real-time
response [27]. The potentially unbounded number of hazard
pointers necessitates dynamic hazard pointer allocation [30],
requiring that the HPBR reference-acquisition primitive be able
to either block or return failure in low-memory situations. In
certain OS kernel situations neither blocking nor failing is an
acceptable response. For example, when physical memory is
exhausted the OS will write pages to external swap space in
order to free memory. Use of a deferred-destruction scheme
based on HPBR in this case can lead to memory deadlock be-
cause memory is exhausted and hazard pointer allocation will
likely fail. In general, allowing hazard pointer allocation to
block would prohibit the use of this scheme in OS kernel sit-
uations where blocking is not acceptable (such as when inter-
rupts are disabled). The alternative solution of introducing a
failure return introduces new software engineering difficulties.
Although these problems can be dealt with in principle, they
may be prohibitively difficult to handle in practice in a large
and complex code base like an OS kernel.

In addition, the not-uncommon case of aggregated data
structures (for example, nested C-language structs) can pose
software-engineering obstacles for the use of hazard pointers.
In such cases, constraints must be imposed on memory allo-
cation, such that a pointer to any component of the aggregate
will be deemed equivalent to an alias, that is to say, a pointer
to some other component of that same aggregate.

Finally, achieving the potential memory-footprint advantages
of hazard pointers depends on the use of a fixed, finite number
of hazard pointers per thread. In this case, hazard pointers do
not need to be explicitly released, since they will be reused in a
relatively short time period. If hazard pointers are dynamically
allocated, however, then they must also be explicitly released
to provide bounds on the amount of unreclaimed memory.

It might still be advantageous to use HPBR in operating sys-
tem kernels like Linux, but only if its use is restricted to code
that (1) is not used when freeing up memory, thus avoiding out-
of-memory deadlocks, (2) requires a strictly bounded number
of hazard pointers, and (3) avoids the pointer-aliasing problems
posed by aggregated data structures. These limitations, how-
ever, make HPBR unsuitable for use as a memory reclamation
scheme when implementing the current Linux RCU API. In the
following section, we take a closer look at this API and several
of its uses in the Linux kernel.

7. Example uses: the Linux RCU API

The Linux RCU API provides a set of operations that allow
lockless concurrent reads of shared data structures and deferred
destruction of elements removed from these structures. Writers
may not prevent readers from accessing the shared data, but
must coordinate with each other in some way. Typically, tradi-
tional spinlocks are used to prevent concurrent updates, how-
ever, other methods could be used as well; the RCU API does
not dictate how updates should be coordinated. In this section,
we review the Linux RCU API and its use of memory, and then
consider a specific example where RCU is used in the Linux
kernel.



1282 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

7.1. Requirements and memory reclamation

The RCU API was designed for use in OS kernels; it is
defined to neither block nor fail for readers, and cannot feasibly
be altered to do so. As noted in Section 6.4, allowing blocking
would prohibit the use of RCU in many situations where it
has proven valuable (such as when interrupts are disabled).
Introducing a failure return instead would be extremely difficult
in many of the 244 uses of this primitive in the Linux 2.6.20
kernel. As a result, RCU uses QSBR for memory reclamation.

The RCU system tracks quiescent states and grace periods.
In the original version, designed for non-preemptable kernels,
context switches are used to identify quiescent states. To al-
low preemptable kernels the API requires read-side critical
regions to be identified with calls to rcu_read_lock and
rcu_read_unlock. These calls disable and enable preemp-
tion to guarantee that context switches (and thus quiescent
states) do not occur while a thread is in the middle of access-
ing an RCU-protected data structure. The RCU API has been
further extended with a new set of quiescent states for use in
interrupt handlers, motivated by the need to prevent DoS at-
tacks, as mentioned in Section 6.4. Finally, other extensions
have targeted real-time response.

The requirements on the RCU API in an OS kernel make
QSBR a natural choice for memory reclamation. Preemption
can be suppressed in a kernel environment, so delayed grace
periods are unlikely. In addition, uses of RCU in Linux have
targeted read-mostly data structures that are rarely updated in
common uses. Since updates are rare, memory reclamation is
also rare and the most important performance consideration is
the overhead required for reads. Our microbenchmark results
show that QSBR has the lowest per-operation overhead for read-
only workloads (see Fig. 6), and we would therefore expect
it to have the best performance for these real uses as well.
Furthermore, since QSBR does not have expensive per-element
atomic instructions, it is well fitted to the concurrently readable
lists which are common in Linux.

Although EBR could also be used in Linux, it has no perfor-
mance advantage over QSBR; any usability advantages are less
relevant given that an implementation with QSBR already ex-
ists. Attempts to use HPBR require dynamic hazard pointer al-
location, leading to the difficulties of failing or blocking noted
earlier. In addition, the RCU API releases references implicitly
at the end of the corresponding RCU read-side critical region,
rather than at the point where the reference is no longer needed.
Therefore, an HPBR-based RCU implementation that traverses
an arbitrary-length list in a single RCU read-side critical sec-
tion could consume an arbitrarily large number of hazard point-
ers. On the other hand, modifying Linux’s RCU API to include
explicit release of RCU references would require prohibitively
large and pervasive changes to Linux [27].

7.2. System V IPC

We now focus on one specific use of RCU in the Linux
kernel—namely, System V IPC. Since alternate implementa-

tions using different memory reclamation schemes do not exist,
we cannot compare their performance in these cases. Our per-
formance comparisons are thus between traditional locking and
RCU. These results show that lockless approaches are valuable
and can out-perform lock-based approaches by a considerable
margin, and that blocking reclamation schemes can be practical
in large applications.

It would be desirable to make all such comparisons using
a contemporary version of the Linux kernel; however, where
RCU has proved valuable it is difficult and largely pointless to
re-engineer the kernel to re-introduce locking again. An alter-
native approach would map the RCU uses in the Linux kernel
to conventional locking; however, such a mapping is in general
problematic. Some of the difficulties include:

(1) RCU read-side critical sections may be entered uncondi-
tionally in any software environment within the kernel, in-
cluding even the non-maskable interrupt handlers that result
in deadlocks when locking is used.

(2) RCU read-side critical sections may include update code.
Attempts to map this usage into reader–writer locking again
result in deadlocks.

Such difficulties are in fact common in the Linux kernel, as
was learned in a failed attempt to replace the RCU API with
locking in order to improve real-time response [25].

Given the impracticality of mapping RCU onto conventional
locking, we instead present the performance comparisons that
were made on server-class machines when proposing concur-
rently readable algorithms with RCU for acceptance into the
Linux kernel. We refer to this use of RCU, where updates use
locking, as CR-QSBR. Specifically, we analyze the use of CR-
QSBR in the implementation of the System V IPC subsystem
in the Linux kernel, showing the system- and application-level
performance implications. Further system-level examples are
discussed in detail by McKenney [24].

The System V IPC subsystem implements System V
semaphores, message queues, and shared memory. Applica-
tions access these resources using an integer ID, and the Linux
kernel uses an array to map from this ID to in-kernel data struc-
tures that represent the corresponding resource. The array is
expandable, and prior to the conversion to use CR-QSBR, was
protected by a spinlock. The array is frequently accessed read-
only when System V IPC objects are used and infrequently
accessed for writing when objects are created or deleted or the
array is resized. Because each element of the array is a single
aligned pointer, object creation and deletion events may be
done in place, hence the array need only be copied for expan-
sions. After conversion to use CR-QSBR, all writes continue
to use the original spinlock, while the more common read op-
erations simply flag entry and exit from critical regions using
the rcu_read_lock and rcu_read_unlock functions.

Two experiments were used to compare the performance of
the Linux 2.5.42-mm2 kernel, with and without CR-QSBR. The
first experiment used a System V semaphore user-level bench-
mark on an 8-CPU 700 MHz Intel PIII system. In this bench-
mark, multiple user-level processes each repeatedly acquire and
release different semaphores in parallel, with the benchmark



T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1283

Table 3
Semopbench application-level results (seconds)

Kernel Run 1 Run 2 Avg.

2.5.42-mm2 515.1 515.4 515.3
2.5.42-mm2+ipc-rcu 46.7 46.7 46.7

70

75

80

85

90

Spinlock CR-QSBR

T
ra

n
s
a

c
ti
o

n
s
 p

e
r 

S
e

c
o

n
d

Fig. 18. DBT1 database benchmark raw results.

Table 4
DBT1 database benchmark results (TPS)

Kernel Average Standard deviation

2.5.42-mm2 85.0 7.5
2.5.42-mm2+ipc-rcu 89.8 1.0

metric being the length of time for each process to complete a
fixed number of such operations. The second experiment used
the DBT1 [33] database-webserver benchmark on an Intel dual-
CPU 900 MHz PIII with 256 MB of memory. The results of the
first experiment are shown in Table 3 and illustrate an order-
of-magnitude increase in the performance for this user-level
benchmark. The raw results for the second experiment are pre-
sented in Fig. 18, with a summary presented in Table 4. The re-
sults show that the RCU-based kernel performs over 5% better
in terms of transactions per second (TPS) than does the stock
kernel. More importantly, the results for the RCU-based kernel
are much more stable; the erratic results for the stock kernel
are not unusual for workloads with lock contention.

8. Related work

Relevant work on reclamation scheme design was discussed
in Section 2. Previous work on the performance of these
schemes, however, is limited. Michael [30] criticized QSBR
for its unbounded memory use, but did not compare the per-
formance of QSBR to that of HPBR, or determine when this
limitation can affect a program. Fraser [9] noted, but did not
thoroughly evaluate, HPBR’s fence overhead and used his
EBR instead. Our work extends Fraser’s, showing that EBR
itself has high overhead, often exceeding that of HPBR.

Auslander implemented a lock-free hash table with QSBR
in K42 [24]. No performance evaluation, either between differ-
ent reclamation methods or between concurrently readable and
lock-free hash tables, was provided. We are unaware of any
work combining QSBR with update-intensive non-blocking al-
gorithms such as queues.

McKenney [24] details many uses of QSBR in the Linux
and K42 OS kernels. We discuss one use of QSBR—namely,
System V IPC—but the focus of our work is on the comparative
performance of memory reclamation schemes.

9. Conclusions

We have performed the first fair comparison of blocking and
non-blocking reclamation across a range of workloads, show-
ing that reclamation has a huge effect on lockless algorithm
performance. Choosing the right scheme for the environment
in which a concurrent algorithm is expected to run is essential
to having the algorithm perform well.

Our results, starting with Fig. 6, show that quiescent-state-
based reclamation (QSBR) is usually the best-performing recla-
mation scheme; however, the performance of both QSBR and
epoch-based reclamation (EBR) can suffer due to memory ex-
haustion in the face of thread preemption or failure. Hazard-
pointer-based reclamation (HPBR) and EBR have higher base
costs than QSBR due to their required fences; for EBR, the
worst-case overhead of fences is constant, while for HPBR it
is unbounded. Lock-free reference counting (LFRC) has even
higher overhead due to the per-element atomic instructions it
requires. HPBR and LFRC both scale poorly when many ele-
ments must be traversed.

Our analysis helped us to identify the main source of over-
head in EBR and decrease it, resulting in our new epoch-based
reclamation (NEBR) scheme. Furthermore, understanding the
impact of reclamation schemes on algorithm performance en-
ables fair comparison of different algorithms—in our case,
lock-free and concurrently readable lists and hash tables.

The results of our analysis indicate that QSBR is, in fact,
the scheme best suited to an OS kernel environment. Our per-
formance data from the Linux kernel shows that lockless ap-
proaches using QSBR are practical and can outperform locking
approaches by a large margin.

We reiterate that blocking reclamation can be useful with
non-blocking algorithms: in the absence of thread failure,
non-blocking algorithms still benefit from deadlock-freedom,
signal handler safety, and avoidance of priority inversion. Nev-
ertheless, one important question remains open, namely, what
sort of weakened non-blocking property could be satisfied by a
reclamation scheme that avoids the per-element overhead that
is incurred by all currently known non-blocking reclamation
schemes.

Legal statement

IBM and POWER are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.



1284 T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Linux is a trademark of Linus Torvalds in the United States,
other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

Acknowledgments

We owe thanks to Maged Michael and Keir Fraser for helpful
comments on their respective work, to Faith Fich and Cristiana
Amza for much helpful advice, and to Dan Frye for his support
of this effort. We are indebted to Martin Bligh, Andy Whitcroft,
and the ABAT team for access to the 8-CPU machine used in
our experiments. Finally, we wish to thank our colleagues at
the University of Toronto who suggested several clarifications.

References

[1] S.V. Adve, K. Gharachorloo, Shared memory consistency models: a
tutorial, IEEE Comput. 29 (12) (1996) 66–76.

[2] T.E. Anderson, The performance of spin lock alternatives for shared-
memory multiprocessors, IEEE Trans. Parallel Distrib. Syst. 1 (1) (1990)
6–16.

[3] A. Arcangeli, M. Cao, P.E. McKenney, D. Sarma, Using read-copy update
techniques for System V IPC in the Linux 2.5 kernel, in: Proceedings
of the 2003 USENIX Annual Technical Conference (FREENIX Track),
USENIX Association, 2003.

[4] E. Berger, K. McKinley, R. Blumofe, P. Wilson, Hoard: a scalable
memory allocator for multithreaded applications, in: Proceedings of
the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, Cambridge, MA, 2000.

[5] H.-J. Boehm, An almost non-blocking stack, in: Proceedings of the 23rd
ACM Symposium on Principles of Distributed Computing, ACM Press,
New York, NY, USA, 2004.

[6] J. Bonwick, J. Adams, Magazines and Vmem: extending the slab
allocator to many CPUs and arbitrary resources, in: USENIX Technical
Conference, General Track, 2001.

[7] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable
distributed systems, J. ACM 43 (2) (1996) 225–267.

[8] D.L. Detlefs, P.A. Martin, M. Moir, G.L. Steele Jr., Lock-free reference
counting, Distrib. Comput. 15 (4) (2002) 255–271.

[9] K. Fraser, Practical lock-freedom, Ph.D. Thesis, University of Cambridge
Computer Laboratory, 2004.

[10] B. Gamsa, O. Krieger, J. Appavoo, M. Stumm, Tornado: maximizing
locality and concurrency in a shared memory multiprocessor operating
system, in: Proceedings of the Third Symposium on Operating Systems
Design and Implementation, USENIX Association, Berkeley, CA, USA,
1999.

[11] A. Gidenstam, M. Papatriantafilou, H. Sundell, P. Tsigas, Efficient and
reliable lock-free memory reclamation based on reference counting,
in: Proceedings of the Eighth International Symposium on Parallel
Architectures, Algorithms and Networks, IEEE Computer Society,
Washington, DC, USA, 2005.

[12] M. Greenwald, Non-blocking synchronization and system design, Ph.D.
Thesis, Stanford University, 1999.

[13] M. Greenwald, D. Cheriton, The synergy between non-blocking
synchronization and operating system structure, in: Proceedings of
the Second USENIX Symposium on Operating Systems Design and
Implementation, ACM Press, 1996.

[14] R. Gupta, The fuzzy barrier: a mechanism for high speed synchronization
of processors, in: Proceedings of the Third International Conference

on Architectural Support for Programming Languages and Operating
Systems, ACM Press, New York, NY, USA, 1989.

[15] T.L. Harris, A pragmatic implementation of non-blocking linked-lists,
in: Proceedings of the 15th International Conference on Distributed
Computing, Springer, Berlin, 2001.

[16] M. Herlihy, Wait-free synchronization, ACM Trans. Prog. Lang. Syst.
13 (1) (1991) 124–149.

[17] M. Herlihy, A methodology for implementing highly concurrent data
objects, ACM Trans. Prog. Lang. Meth. 15 (5) (1993) 745–770.

[18] M. Herlihy, V. Luchangco, M. Moir, The repeat offender problem:
a mechanism for supporting dynamic-sized, lock-free data structures,
in: Proceedings of the 16th International Symposium on Distributed
Computing, 2002.

[19] M. Herlihy, V. Luchangco, M. Moir, Obstruction-free synchronization:
double-ended queues as an example, in: Proceedings of the 23rd
International Conference on Distributed Computing Systems, IEEE
Computer Society, 2003.

[20] IBM, IBM System/370 Extended Architecture, Principles of Operation,
No. SA22-7085, 1983.

[21] L.I. Kontothanassis, R.W. Wisniewski, M.L. Scott, Scheduler-conscious
synchronization, ACM Trans. Comput. Syst. 15 (1) (1997) 3–40.

[22] S. Kumar, D. Jiang, R. Chandra, J.P. Singh, Evaluating synchronization
on shared address space multiprocessors: methodology and performance,
in: Proceedings of the 1999 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, ACM
Press, New York, NY, USA, 1999.

[23] L. Lamport, How to make a multiprocessor computer that correctly
executes multiprocess programs, IEEE Trans. Comput. 28 (9) (1979)
690–691.

[24] P.E. McKenney, Exploiting deferred destruction: an analysis of read-
copy-update techniques in operating system kernels, Ph.D. Thesis, OGI
School of Science and Engineering at Oregon Health and Sciences
University, 2004.

[25] P.E. McKenney, Real-time preemption and RCU, available:
〈http://lkml.org/lkml/2005/3/17/199〉 March 2005, (Viewed September 5,
2005).

[26] P.E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma,
M. Soni, Read-copy update, in: Proceedings of the 2001 Ottawa Linux
Symposium, 2001.

[27] P.E. McKenney, D. Sarma, Towards hard realtime response from the
Linux kernel on SMP hardware, in: linux.conf.au, Canberra, AU, 2005.

[28] P.E. McKenney, J.D. Slingwine, Read-copy update: using execution
history to solve concurrency problems, in: Proceedings of the 1998
International Conference on Parallel and Distributed Computing and
Systems, Las Vegas, NV, 1998.

[29] M.M. Michael, Safe memory reclamation for dynamic lock-free objects
using atomic reads and writes, in: Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing, 2002.

[30] M.M. Michael, Hazard pointers: safe memory reclamation for lock-free
objects, IEEE Trans. Parallel Distrib. Syst. 15 (6) (2004) 491–504.

[31] M.M. Michael, Scalable lock-free dynamic memory allocation, in:
Proceedings of the ACM Conference on Programming Language Design
and Implementation, 2004.

[32] M.M. Michael, M.L. Scott, Correction of a memory management method
for lock-free data structures, Technical Report TR599, Computer Science
Department, University of Rochester, December 1995.

[33] Open Source Development Labs, Inc., Database test suite, available:
〈http://www.osdl.org/lab_activities/kernel_testing/osdl_database_test_su
%ite/〉 2003, (Viewed June 29, 2005).

[34] D. Sarma, P.E. McKenney, Issues with selected scalability features of the
2.6 kernel, in: Proceedings of the 2004 Ottawa Linux Symposium, 2004.

[35] J. Seigh, RCU + SMR for preemptive kernel/user threads, linux-kernel
mailing list, available: 〈http://lkml.org/lkml/2005/5/9/129〉, 2005.

[36] H. Sundell, Efficient and practical non-blocking data structures, Ph.D.
Thesis, Chalmers University of Technology, 2004.

[37] H. Sundell, Wait-free reference counting and memory management, in:
Proceedings of the 19th International Parallel and Distributed Processing
Symposium, 2005.

http://lkml.org/lkml/2005/3/17/199
http://www.osdl.org/labactivities/kerneltesting/osdldatabasetestsuite/
http://www.osdl.org/labactivities/kerneltesting/osdldatabasetestsuite/
http://lkml.org/lkml/2005/5/9/129


T.E. Hart et al. / J. Parallel Distrib. Comput. 67 (2007) 1270–1285 1285

[38] H. Sundell, P. Tsigas, Lock-free and practical doubly linked list-based
deques using single-word compare-and-swap, in: Proceedings of the
Eighth International Conference on Principles of Distributed Systems,
2004.

[39] J.D. Valois, Lock-free linked lists using compare-and-swap, in:
Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing, 1995.

Thomas E. Hart is a Ph.D. student in the De-
partment of Computer Science at the Univer-
sity of Toronto. His research interests are in
computer security, automated verification, and
synchronization. He holds a B.Sc. in Mathe-
matics and Computer Science from Brandon
University (2003) and an M.Sc. in Computer
Science from the University of Toronto (2005).
He is the holder of an NSERC Canada Graduate
Scholarship.

Paul E. McKenney is a Distinguished Engi-
neer at IBM’s Linux Technology Center, where
he works on parallel real-time synchronization
primitives in the Linux kernel. Prior to that, he
worked on a parallel UNIX database-server op-
erating system at Sequent Computer Systems,
and on Internet and packet-radio congestion-
control protocols at SRI International. He holds
more than 20 patents and has published more
than 30 papers. He holds B.Sc. degrees in Com-
puter Science and in Mechanical Engineering
and an M.Sc. degree from Oregon State Univer-
sity (1981 and 1988), and a Ph.D. from Oregon
Health and Sciences University (2004).

Angela Demke Brown is an Assistant Profes-
sor in the Department of Computer Science at
the University of Toronto. Her research inter-
ests include operating systems, dynamic compil-
ers, and interpreters. Her focus is on delivering
the underlying performance of emerging com-
puter architectures to user applications through
the interaction of language tools and operating
system services. She holds M.Sc. and Ph.D. de-
grees in Computer Science from the University
of Toronto (1997) and Carnegie Mellon Univer-
sity (2005), respectively.

Jonathan Walpole is a Full Professor in the
Computer Science Department at Portland State
University. His research interests are in operat-
ing systems, distributed systems, and network-
ing. His current research focuses on scalable
synchronization mechanisms for shared memory
multiprocessor systems. He has published over
100 research papers and has served as a program
committee member and reviewer for numerous
International scientific conferences and journals.
He holds B.Sc. and Ph.D. degrees in Computer
Science from Lancaster University, UK (1984

and 1987) and was awarded a Post-Doctoral Fellowship by the UK Science
and Engineering Research Council in 1988.


