
Tamper Resistant Network Tracing
Andrew G. Miklas†, Stefan Saroiu†, Alec Wolman‡, and Angela Demke Brown†

†University of Toronto and‡Microsoft Research

Abstract: Raw network traces can be used to compro-
mise the privacy of Internet users. For this reason, many
ISPs are reluctant to collect network traces – they often re-
gard possession of such traces as a liability. To mitigate this
concern, anonymization techniques have been developed to
protect user-identifying information. While most projects
anonymize their traces as a post-processing step (i.e., of-
fline), offline anonymization is insecure because raw data
may still be exposed during the trace collection and anony-
mization steps. As an alternative, anonymization can be per-
formed online, drastically reducing the privacy risks associ-
ated with storing raw data. Unfortunately, online anony-
mization is challenging in practice – data must be captured,
reconstructed, analyzed, and anonymized at line speed.

This paper presents a network tracing architecture that
combines the performance benefits of offline anonymization
with the privacy benefits of online anonymization. Our ap-
proach uses a virtual machine and an encrypted file system
to protect the raw data allowing it to be securely anonymized
offline. In this paper, we present our system’s design, and the
implementation and evaluation of a simple prototype.

1 Introduction
Modern computer networks and applications are becom-

ing increasingly complex. As a result, understanding the
behavior of today’s networked systems is harder than ever.
Collecting traces of network activity is a powerful and
widespread approach to addressing this challenge – it allows
network operators to perform traffic engineering and capac-
ity planning; it allows system administrators and application
developers to diagnose faults and debug applications; and it
allows researchers to examine Internet traffic to help guide
the design of future networks and applications.

Despite these benefits, many ISPs avoid collecting net-
work traces because they view possessing them as a liabil-
ity; raw traces may be used to compromise the privacy of
their customers. Protecting user privacy is becoming in-
creasingly important, as evidenced by recent announcements
from Web search sites that they will voluntarily limit reten-
tion of search logs [20]. For ISPs, the concern about pos-
sessing network traces is that they may be revealed, either
through leaks or subpoenas. These are not merely hypothet-
ical possibilities: the RIAA has subpoenaed log files while
pursuing cases against users suspected of copyright infringe-
ment [6]. Oversights or errors in the preparation of traces
and logs have also compromised user privacy, resulting in
serious consequences [23].

Trace anonymization is the most commonly used tech-
nique to address these privacy concerns. This technique
uses a one-way transformation to obfuscate any information
that can be used to identify a particular user. This allows

network researchers and operators to preserve valuable data
while simultaneously protecting customer privacy. The most
common methodology for anonymization is “offline anony-
mization,” in which the anonymization of the gathered data
is done onlyafter the entire raw trace has been collected
and stored. However, offline anonymization can still lead
to exposure of the raw data: until the raw trace is securely
deleted, there is the potential for exposure by subpoena or
leakage. This potential for privacy loss is becoming more
severe as traces contain more sensitive information because
of the need to look “deeper” into packets.

Although today most network tracing projects use offline
anonymization, current privacy trends make it unlikely that
ISPs will continue to accept the risks associated with this
approach. Instead, online anonymization can mitigate these
risks by obfuscating user-identifying information on the fly.
With online anonymization, no raw data is ever stored to
disk. Instead, raw packets are reconstructed into higher-
level protocols (e.g., TCP, HTTP, SMTP) and relevant in-
formation is extracted and anonymized before being writ-
ten to the disk. Because the raw trace is only stored in
volatile memory, online anonymization offers much stronger
privacy guarantees than offline anonymization. These addi-
tional guarantees can persuade ISPs and network adminis-
trators to allow the collection of anonymized network traces.
The authors of this paper have experience with tracing Web,
P2P, and e-mail traffic at two different Universities. In both
cases, anonymizing data online was vitally important to con-
vincing the network operators or the members of Ethics Re-
view committees to authorize our studies [18, 22, 19].

Despite these privacy benefits, there are two challenges
that make online anonymization much more difficult to de-
ploy in practice. First, the tracing infrastructure must besuf-
ficiently provisioned to handle the network’s peak through-
put. In reality, this is very difficult because a network trac-
ing platform must perform resource intensive tasks, such
as TCP session reconstruction, application-layer protocol
parsing (e.g., HTTP or SOAP), extraction of the relevant
data, and anonymization at line speed. As a point of con-
trast, routers use specialized hardware to perform less re-
source intensive tasks (e.g., routing and forwarding) at line
speed. Second, programmers face significant engineering
challenges when developing online analysis and anonymiz-
ation software. The performance constraints prevent them
from using managed language environments, such as Java,
Perl, or C#. In addition, unmanaged languages (e.g., C) pro-
vide little in the way of memory protection: a bad memory
access can crash the tracing system or result in subtle data
corruption. Existing libraries (e.g., HTML parsers or regexp
engines) also become more difficult to reuse because they of-
ten make choices incompatible with the performance needs

1



of an online tracing environment.
In this paper, we present a network tracing architecture

that offers the best of both worlds. Our approach combines
the operational and software development benefits of offline
anonymization with the privacy offered by online anonymiz-
ation. Our key insight is that offline anonymization can pro-
vide the same privacy benefits as online as long as no one can
tamper with the trace collection software, the analysis soft-
ware and the raw trace data. Instead, in our system the trace
collection and analysis software is pre-loaded before the raw
data is gathered. Once pre-loaded, this software is inaccessi-
ble and unmodifiable; users, network operators, and admin-
istrators are all unable to interact with the trace processing
software. Similarly, the raw data is also inaccessible and
unreadable by anything other than the pre-loaded software.

The design of our network tracing system makes the sen-
sitive data (e.g., the raw traces, the encryption keys, and
the anonymization keys) inaccessible during trace collec-
tion and anonymization. Our architecture further ensures
the volatility of all sensitive data, resulting in its destruction
upon reboot; only the anonymized trace data is allowed to
persist across reboots. By combining the above properties,
our system can effectively protect the sensitive data without
hardware support such as a Trusted Platform Module (TPM).

Our approach uses a virtual machine (VM) to isolate the
tracing environment while the trace data is being gathered
and analyzed. The network tracing software that runs in this
VM consists of two components. An online component col-
lects the raw trace data, encrypts it with a randomly gener-
ated key, and writes it to disk. The encryption key is only
stored in volatile memory within the isolated VM – it is
never written to disk, and the system ensures that this key
is inaccessible outside the isolated VM. The second com-
ponent performs offline trace analysis and anonymization.
This component is also executed inside the isolated virtual
machine after the raw trace has been collected, and only the
final anonymized trace is written to an exposed disk.

2 Our Design

Our main insight is that a tracing infrastructure can main-
tain large caches of user-identifiable data without compro-
mising user privacy as long as no user-identifiable data is
allowed to leave the host. In this section, we show how a sys-
tem can be configured to enforce this requirement, achieving
the privacy benefits of online anonymization while preserv-
ing the attractive usability features of offline anonymization.

2.1 Design Goals

1. Privacy. While the system may store sensitive data
such as unanonymized packets, it must never be possible for
an outside agent to extract this data.

2. Ease of use.The infrastructure should place as few
constraints as possible on the implementation of the analysis
software. For example, protocol reconstruction and parsing
should not have real-time performance requirements.

3. Robustness.Common bugs found in handling corner
cases in the parsing and analysis code should lead to small

errors in the trace, rather than crashing the system or com-
pletely corrupting its output.

4. Performance.The proposed system must perform as
well as today’s network tracers when running on equivalent
hardware. In particular, it should be possible to trace a high-
capacity link with inexpensive hardware.

5. Re-use commodity hardware and software.While
the infrastructure could benefit from specialized hardware
or software, such as a Trusted Platform Module (TPM), it
should be possible to satisfy the above goals using only com-
modity software and equipment.

2.2 Key Abstractions

Our tracing infrastructure uses two well-known abstrac-
tions to protect sensitive data: virtual machines and encryp-
tion. In the remainder of this section, we will describe how
the combination of these abstractions prevents an adversary
from accessing the raw data and the anonymization software,
even with full physical access to the hardware.

Virtual machine monitors (VMMs) are often used to pro-
vide resource isolation between mutually untrusting VMs [4,
8]. Using virtual machines for isolation is especially bene-
ficial for tasks that require little interaction [2], which is the
case with network tracing. We protect all sensitive data asso-
ciated with collecting and anonymizing network traces. The
tracing infrastructure runs all software that processes cap-
tured data inside a highly trustedinaccessible virtual ma-
chine(IVM). As its name implies, users, administrators, and
software in other VMs are all unable to interact with the IVM
or access any of its internal state once it starts running. To
provide this guarantee, we made several modifications to the
VMM. We disallowed any untrusted VMs to access DMA-
capable devices [7]; we disabled debugging facilities to pre-
vent unauthorized memory accesses; we deactivated stan-
dard VMM management functions, such as suspend and mi-
grate; and, finally, we turned off the memory paging mecha-
nisms in the IVM.

Tracing experiments will frequently generate more sensi-
tive data than can fit into memory, imposing a requirement
for the safe use of stable storage. For example, a researcher
might need to capture a very large raw packet trace before
running a multi-pass analysis. VMMs alone cannot protect
data written to disk, because the adversary could move the
drive to another system and then extract the sensitive data.

We use encryption to ensure that sensitive data stored on
the hard disk cannot be retrieved after a reboot. On boot-up,
the IVM selects a random key that will be used to encrypt
any data written to the hard disk. This key will only be stored
in volatile memory assigned to the IVM, ensuring that it is
both inaccessible to other VMs and lost on reboot. Because
data stored on the disk can only be read with the encryp-
tion key, the data is effectively destroyed after a reboot. The
use of encryption to make disk storage effectively volatileis
not novel; swap file encryption is used on some systems to
ensure that fragments of an application’s memory space do
not persist once the application has terminated or the system
restarted [16].

2



Inaccessible VMCommodity VM

Hypervisor

Enc.

Key

Console Anonymized 

Trace

Encrypted

Raw Trace

Capture

Hardware

One-Way

Socket

reconstruct

decrypt

parse

anonymize

capture

encrypt

Anon.

Key

Online

Offline

save trace

logging

maintenance

Figure 1. The system’s overall design. The online compo-
nent captures packets off the wire, encrypts them, and stores
them on disk. All access to sensitive data occurs only within
the inaccessible VM. Because the Xen Dom0 domain has full
access to the hardware, we use it to contain the IVM.

2.3 Design Details and Expected Usage

The overall design of our system is shown in Figure 1.
At a high level, the system consists of two virtual ma-
chines: an inaccessible VM (IVM) that contains all sensi-
tive data and the software to process it, and a commodity
VM. The commodity VM allows the researcher to config-
ure the trace system and observe non-sensitive information
about the progress of the trace; it is given just enough con-
trol over the VMM to start and stop the IVM, and to halt the
physical system.

The VMM provides the IVM with access to three I/O de-
vices: the network capture device, a block device, and a one-
way socket [24] to the commodity VM. The block device is
used to store (encrypted) sensitive data that is too large to
keep in memory. The one-way socket allows the IVM to
send non-sensitive logging data and the anonymized trace
out to the commodity VM. The absence of a bi-directional
pipe or virtual network between the VMs adds an additional
layer of safety to the system because data never flows from
the commodity VM to the IVM. Even if the software run-
ning in the IVM has bugs, it is highly unlikely they can be
exploited through such a narrow interface.

Prior to beginning a trace, the researcher prepares the disk
image used by the IVM. The image will contain a complete
operating system, packet capture software, and trace analy-
sis and anonymization software. The prepared system must
be able to run from start to finish without any user interven-
tion. When ready to begin the trace, the researcher logs into
the commodity VM, copies the disk image to a block device
on the system, and instructs the VMM to boot the IVM. At
this point, the VMM will unmap the block device containing
the trace software from the commodity VM, map the device

into the newly instantiated IVM, and boot it.
After booting, the IVM randomly generates the hashing

and encryption keys, both of which are considered sensitive
data. The hashing key is used to reduce an adversary’s abil-
ity to conduct a dictionary attack against the anonymized
trace. The encryption key is used to encrypt any sensitive
data written to the hard drive. We ensure that all sensitive
data is encrypted by mounting the IVM’s root device read-
only, and then mounting an encrypted read-write overlay de-
vice. This approach is supported by Linux’s logical volume
management feature, and has the advantage of automatically
encrypting all data written to disk.

Once the system is initialized, packet capture and analy-
sis begin. Conceptually, the packet capture software is re-
sponsible for copying all traffic off the network capture de-
vice and placing it into a ring buffer backed by encrypted
disk storage. Because of the encrypted disk storage, this
buffer can support a large backlog of packets. The analysis
software reads packets from the buffer and processes them to
produce the anonymized trace. The anonymized trace is then
sent via the one-way socket to the commodity VM, where it
can be viewed by the researcher while the system is running.

The trace software in the IVM also delivers a diagnostic
log to the commodity VM using the one-way socket. This
log is intended to allow researchers to monitor the progress
of the tracer while it is in operation. Information gleaned
from the log might assist in debugging or optimizing the
tracing software for future runs. Clearly, no sensitive data
appears in the diagnostic log.

As part of its configuration, the tracing system is provided
with a list of stop conditions that cause the IVM to halt it-
self automatically. While these conditions can be entirely
arbitrary, we expect that typically the system will be config-
ured to stop after the trace meets a specified duration. Once
the IVM terminates, the VMM will zero out all memory that
was assigned to it. It will then map the block device back
into the commodity VM where it can be loaded with new
software in preparation for the next tracing run.

2.4 Handling Faults

One serious drawback of most online anonymization
techniques is their inability to cope gracefully with bugs in
the analysis software. If the tracing software crashes, alldata
is lost until the system can be restarted. This can result in the
loss of megabytes of data, even if the restart process is en-
tirely automated. Worse, this process introduces systematic
bias in the data collection, because a long-lived flow is more
likely to be affected by a crash than a short-lived flow.

Our system is better able to cope with bugs because the
capture and analysis stages are fully decoupled from each
other. We can assume that bugs in the capture stage, where
a crash would cause data loss, will be very rare for two rea-
sons. First, the capture software is responsible only for cap-
turing packets and loading them into the buffer (encryption
can be handled automatically by the file system layer). Be-
cause the capture stage has few responsibilities, it will be
small and easy to test extensively. Second, there is little rea-
son to change the capture software from one run to another;

3



nearly all customizations will be implemented in the analysis
stage. Because it encompasses much of the system’s com-
plexity, most bugs will occur instead in the analysis stage.A
crash of this stage does not result in the loss of any network
traffic because the capture software can continue to queue
up packets while the analysis software is being restarted.

If necessary, our infrastructure allows the analysis soft-
ware to reconstruct lost flow state by having the restarted
analysis software begin reading from the earliest packet still
in the buffer, rather than the first unprocessed packet. Of
course, care must be taken to remove the packet that trig-
gered the crash prior to restarting the analysis software. We
also remove duplicate entries that might result from this “au-
tomatic replay” mechanism in a post-processing stage.

2.5 Benefits

Unlike offline anonymization, our approach does not re-
quire researchers to work with sensitive data at any time.
Because researchers cannot access unanonymized data, they
cannot be expected to produce it under a subpoena. Our ap-
proach also greatly reduces the chance that unanonymized
data will be stolen or accidentally released, because individ-
uals cannot easily extract such data from the system.

The privacy guarantees provided by our tracing system
are even stronger than the ones offered by online anony-
mization. In our system, the hashing key is enclosed inside
of an inaccessible virtual machine. While tracing systems
that anonymize data online are typically careful not to write
unanonymized data out to disk, they generally do not protect
the hashing key against theft by an adversary with the abil-
ity to log into the machine. In contrast, our approach also
prevents anyone from accessing the hashing key.

When encrypted disk space is used to store sensitive data,
the analysis code is free to run offline at much slower than
line speeds, because the disk can be used to store the raw
packets for later processing. In extreme cases, the entire
analysis can be deferred until after the raw trace is gathered.
The flexible performance requirements imposed by our sys-
tem allow the researcher to use managed languages and so-
phisticated libraries when creating the analysis software. As
a result, the code is both easier to write and less likely to
contain bugs.

While advanced languages and libraries can help the re-
searcher to produce correct code, it is unrealistic to expect
that complex protocol parsers will be entirely bug-free. Our
tracing infrastructure allows the analysis software to fail
gracefully in the presence of such bugs, as described in Sec-
tion 2.4. In contrast, when online parsers crash, they gener-
ally lose data from all flows until they are restarted.

Lastly, our system is built using only off-the-shelf hard-
ware and software, which provides many practical benefits.
For example, the entire system can be run on an ordinary
and inexpensive PC. Software components, such as the Xen
VMM, can be freely downloaded from the Web. Further-
more, our system can take advantage of performance en-
hancements to VMM software as they become available.

3 Security Analysis

In this section, we start by describing the security as-
sumptions we made. Next, we identify the threats to user
privacy introduced by our network tracing infrastructure and
characterize its ability to deal with those threats.

3.1 Our Assumptions

Our design is centered on four assumptions: (1) the
VMM prevents software in one VM from reading memory
assigned to another; (2) memory is cleared on a reboot; (3)
it is impractical to physically extract data from a typical PC
without triggering a reboot; (4) it is infeasible to decryptdata
without the key.

We use VMMs to protect all sensitive data such as the en-
cryption and anonymization keys. Virtual machine monitors
are trusted to maintain isolation between VMs in many mis-
sion critical and security driven applications [4, 8]. While
both VMMs and OS kernels are responsible for isolating
units of software from each other, VMMs are generally
thought to provide stronger security guarantees because they
are small enough to be rigorously verified and export only a
very narrow interface to VMs. In contrast, OS kernels tend
to be very large and complex pieces of software that supply
very rich interfaces to their clients.

Memory that retains its value across reboots [3] may
compromise the security of our system. For example, an ad-
versary could insert a boot-CD containing an ordinary Linux
installation and then physically reboot the tracing system.
He could then dump out physical memory in an attempt to
locate the decryption key. Because the VMM is no longer
in control of the system, it cannot protect the sensitive data
from capture. This vulnerability can be removed if the BIOS
performs a full memory test before transferring control to the
boot media, which generally involves initializing every ad-
dress to some known value. Of course, care would have to
be taken to ensure that the user cannot abort or otherwise
disable the memory test.

While VMMs protect the sensitive data from logical at-
tack, they cannot protect the data from an attacker with phys-
ical access. Fortunately, it is not straightforward to physi-
cally extract data from the memory of an ordinary PC. An
attacker would need to physically attach hardware such as a
bus analyzer to the tracing host without triggering a reboot.
To protect against such attacks, additional physical security
measures must be employed [21] such as coating the sys-
tem’s mainboard with epoxy [1].

3.2 Threat Model

The first threat we consider is that of subpoena. ISPs are
discovering that logs and traces gathered for diagnostic and
research purposes can be used in court proceedings against
their customers. A detailed trace of P2P activity that may be
very useful to the research community [9, 15, 10] would also
be of great benefit to the RIAA: it would allow them to iden-
tify users who are inappropriately sharing copyrighted con-
tent. If the RIAA subpoenas a trace, the ISP will be required
by law to turn it over, even though the ISP has no business

4



incentive to co-operate with the RIAA and may in fact have
good reasons not to. As a result, ISPs may view the bene-
fits of collecting network traces as being outweighed by the
liability of possessing information that could be subpoenaed
and then used to compromise the privacy of their customers.

Our tracing architecture was largely motivated by the
need to conduct traces while still preserving user privacy,
even if a court requires that someone be allowed full access
to any existing traces and to the trace infrastructure. Our sys-
tem can protect user privacy even if the adversary has phys-
ical access to the tracing machine and has full administra-
tive privileges to login to the machine. In other words, once
a tracing experiment has been initiated, the sensitive infor-
mation such as the raw trace and the anonymization key are
protected from the system administrator in the same way that
they are protected from any adversary. Therefore, our solu-
tion makes it technically infeasible not only to turn over the
hashing key used in the anonymization process, but also to
turn over any raw traces that have not yet been anonymized.
Being forced to turn over the tracing system simply leads to
a loss of any tracing data that was collected but had not yet
been anonymized.

Another potential threat to a network tracing system is
remote theft of the anonymized data collected by the trac-
ing machine. There are many possible ways to break into
a system over the network, yet there is one simple solution
that eliminates this entire class of attacks. We configure the
port on the network switch to which the tracing machine is
attached so that it can only be used for port mirroring – any
traffic transmitted by the tracing machine will be discarded
by the network switch. This effectively prevents any trace
data from being transmitted over the network by an unau-
thorized user (or any user, for that matter).

3.3 Unaddressed Attacks

Our tracing architecture does not protect against faulty
anonymization policies. We have no means to ensure that the
data written to the anonymized trace is in fact fully anony-
mous. Unfortunately, there is no simple checklist or set of
rules that can be followed to ensure that a trace does not
leak private data. In fact, even a rigorous manual audit of
the trace anonymization software can miss certain proper-
ties and anomalies that could be exploited by a determined
adversary [12]. Fortunately, there are tools that can aid in
the design and implementation of sound anonymization poli-
cies [13].

Our tracing system is also susceptible to traffic injection
attacks. To perform a packet injection attack, an adver-
sary transmits traffic on the network being traced, then later
identifies this traffic in the anonymized trace. For exam-
ple, suppose the adversary knows that an anonymized trace
of HTTP traffic is being collected and wants to learn how
many other users on the network are visiting a certain Web
site. The adversary generates HTTP GET requests to the
Web site of interest at known times and with an unusual size
(most GET requests are small). The adversary then learns
the anonymized name of the Web site of interest by scan-
ning through the anonymized trace searching for requests

that match the generated times and sizes.
Packet injection attacks do not completely break the

anonymization: for example, they do not allow the adversary
to deduce the anonymization key. However, they may allow
the adversary to derive sensitive data from the anonymized
trace. The best way to defend against such attacks is simply
to avoid public release of the anonymized trace data.

3.4 Operational Attacks

In addition to threats to user privacy, network tracers are
also subject to another class of incidental attacks. Any at-
tack that traverses the network link being monitored by the
network tracing system may also incidentally affect the trac-
ing system itself. This is especially a problem when trac-
ing networks directly connected to the Internet because hosts
routinely receive attack traffic such as vulnerability probes,
denial-of-service (DoS) attacks, and backscatter from at-
tacks occurring elsewhere on the Internet [14]. Methods
exist to reduce the impact of DoS attacks [11] and adver-
sarial traffic [5]; however, these methods may have limited
effectiveness against a large enough attack. Tracers that use
offline anonymization are more resilient to such attacks be-
cause they need not process the attack traffic in real time.

4 Implementation and Evaluation

In this section, we describe an implemented prototype of
the online portion of our system. Our goal is to evaluate the
performance implications of running a packet capture pro-
gram encapsulated in a virtual machine and recording a raw
trace to an encrypted file system. Because one of our design
goals is to reuse commodity software and hardware, we used
off-the-shelf software and hardware components in all our
experiments. We believe that our prototype’s performance
can be easily increased by better provisioning the hardware
and optimizing the software.

Our tracing host usestcpdumpversion 3.9.5 to collect the
packet traces. For virtual machine isolation, we use the Xen
3.0.3-1 hypervisor. We use the Xen Dom0 privileged do-
main to host the inaccessible virtual machine (IVM) giving
the tracing software direct access to the machine’s physical
network card and hard disk. In this way, we reduce the over-
head introduced by virtualization.

Our use of the Xen infrastructure is unusual. In typi-
cal Xen-based systems, most software runs outside Dom0 to
protect privileged operations from buggy or malicious code.
Instead, our system runs the bulk of the functionality in the
privileged domain. We made this decision for a number of
reasons. First, because Dom0 is privileged it must be inac-
cessible. Also, because the capture software and Dom0 are
both inaccessible, they can both run within the same isola-
tion boundary. Finally, the capture software has fast access
to the hardware when running in Dom0.

Our tracing host is a dual Intel Xeon 3.6GHz (four cores)
with 1 GB of RAM, a Fujitsu MAP3367MP SCSI disk, and
an Intel 82541 gigabit NIC. We are running Linux Debian
4.0 (etch), kernel version 2.6.18-4. This machine is attached
to a dedicated Dell PowerConnect 2724 gigabit switch to

5



which two other commodity PCs are also attached. One PC
sends constant bit-rate (CBR) traffic at a configurable rate to
the other PC, while the switch is configured to mirror all traf-
fic and send it to our tracing host. The two PCs are config-
ured to send traffic at a rate of up to 700 Mbps. In addition,
we verified that no packets were being lost by the switch.

We used thedm-crypt[17] device-mapper module from
the Linux 2.6 kernel to encrypt the captured data. This mod-
ule provides a simple abstraction – it adds an encrypted de-
vice on top of any ordinary block device without the need
for any support from a file system or an application. The
dm-crypt module supports several encryption schemes; the
one we used was a carefully optimized implementation of
AES.

We perform a brief evaluation of our prototype. The goal
of our evaluation is to quantify the performance overhead
introduced by the virtualization layer and by the encryption
module. For this, we measure the packet loss rate of our trac-
ing host when capturing UDP traffic sent at a constant rate
(CBR) when the rate varies from 30,000 to 60,000 packets
per second. Because each packet is 1500 bytes, this corre-
sponds to 340 to 690 Mbps.

Figure 2 shows the loss rate experienced by our host un-
der four configurations. First, we evaluated “tcpdump” run-
ning without encryption and without a VM. We found that
once the packet rate reached 486 Mbps, the system started
to experience loss (less than 0.3%). Because our host has
a single disk, the disk’s write speed becomes the system’s
bottleneck at high packet rates. In a separate experiment, we
found that our SCSI disk has a maximum write rate of about
60 Mbytes per second (about 480 Mbps).

Second, when we ran “tcpdump” inside the Xen Dom0
privileged domain, we found that the virtualization layer
added an insignificant overhead – at a packet rate of 486
Mbps, the loss rate was less than 0.9%. Third, when we
ran “tcpdump” with encryption but without a VM, we also
found that the loss rate was about 0.3% at a packet rate of
486 Mbps. Finally, we evaluated our prototype with both en-
cryption and virtualization. This configuration experienced
worse performance – at a packet rate of 486 Mbps, the loss
rate was 8%. However, the system experienced no losses
once the packet rate was reduced by 5% to 460 Mbps. We
found this preliminary experiment very encouraging. Even
with off-the-shelf hardware and software components, the
overhead of virtualization and encryption is small, making
our tracing platform practical.

5 Summary

This paper presented a network tracing architecture that
combines the performance benefits of offline anonymization
with the privacy offered by online anonymization. We used
virtual machines technology and encryption to protect the
raw data allowing it to be securely anonymized offline. We
also described an implementation and an evaluation of a sim-
ple prototype.

0%

10%

20%

30%

40%

300 400 500 600 700

Traffic Rate (Mbps)

L
o

s
s
 R

a
te

tcpdump

tcpdump in VM

tcpdump in VM + encryption

tcpdump + encryption

Figure 2. Evaluation of a prototype of our system. We mea-
sured the loss rate as a function of the traffic rate. As traffic
increases past 460 to 480Mbps, our systems starts to expe-
rience losses. This rate corresponds to the maximum write
speed of our disk. The performance overhead incurred by
virtualization and encryption is small.

Acknowledgments

We would like to thank Gianluca Iannaccone and Intel
Research for the generous support with the hardware needs
of this project. We are grateful to Yashar Ganjali, Andy
Warfield, and the anonymous reviewers for their feedback.

References

[1] R. Anderson and M. Kuhn. Tamper resistance - a cautionary
note. InProc. of the 2nd USENIX Workshop on Electronic
Commerce, Oakland, CA, November 1996.

[2] S. M. Bellovin. Virtual machines, virtual security.Communi-
cations of the ACM, 49(10), 2006.

[3] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shred-
ding your garbage: reducing data lifetime through secure
deallocation. InProc. of the 14th USENIX Security Sympo-
sium, Baltimore, MD, July 2005.

[4] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen. A
safety-oriented platform for web applications. InProc. of
the 27th IEEE Symposium on Security and Privacy, Oakland,
CA, May 2006.

[5] S. Dharmapurikar and V. Paxson. Robust TCP stream re-
assembly in the presence of adversaries. InProc. of the 14th
USENIX Security Symposium, Baltimore, MD, July 2005.

[6] Electronic Frontier Foundation. RIAA v. Verizon
case archive.http://www.eff.org/legal/cases/
RIAA v Verizon/.

[7] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. InProc. of the 1st ACM workshop on Op-
erating System and Architectural Support for the On-Demand
IT Infrastructure (OASIS), Boston, MA, October 2004.

[8] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: a virtual machine-based platform for trusted comput-
ing. In Proc. of the 19th ACM symposium on Operating Sys-
tems Principles (SOSP), Bolton Landing, NY, October 2003.

[9] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. InProc. of the 19th

6



ACM symposium on Operating Systems Principles (SOSP),
Bolton Landing, NY, October 2003.

[10] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like sys-
tems. InProc. of the 5th ACM Internet Measurement Confer-
ence (IMC), Berkeley, CA, October 2005.

[11] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and
defense mechanisms.ACM SIGCOMM Computer Communi-
cations Review, 34(2):39–53, 2004.

[12] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and
packet trace anonymization.ACM SIGCOMM Computer
Communication Review, 36(1):29–38, 2006.

[13] R. Pang and V. Paxson. A high-level programming envi-
ronment for packet trace anonymization and transformation.
In Proc. of the 9th ACM SIGCOMM Conference, Karlsruhe,
Germany, August 2003.

[14] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Pe-
terson. Characteristics of Internet background radiation.
In Proc. of the 4th ACM Internet Measurement Conference
(IMC), Taormina, Italy, October 2004.

[15] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips.
The Bittorrent P2P file-sharing system: Measurements and
analysis. InProc. of the 4th International Workshop on Peer-
to-Peer Systems (IPTPS), Ithaca, NY, February 2005.

[16] N. Provos. Encrypting virtual memory. InProc. of the 9th
USENIX Security Symposium, Denver, CO, August 2000.

[17] C. Saout. dm-crypt: a device-mapper crypto target, 2007.
http://www.saout.de/misc/dm-crypt/.

[18] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of Internet content delivery systems.
In Proc. of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), Boston, MA, December 2002.

[19] S. Saroiu and T. Ronda. Using network tracing to ad-
dress internet phishing, 2006. Project proposal to the
Ethics Review Committee at the University of Toronto –
http://www.slup.cs.toronto.edu/utmtrace/
ethics/ethics.html.

[20] B. Stone. The most privacy-friendly search engine on the web
is... New York Times, July 2007.

[21] S. H. Weingart. Physical security devices for computersub-
systems: A survey of attacks and defenses.Lecture Notes in
Computer Science, 1965:302–317, 2000.

[22] A. Wolman.Sharing and Caching Characteristics of Internet
Content. PhD thesis, University of Washington, Seattle, WA,
2002.

[23] T. Zeller Jr. AOL executive quits after posting of search data.
International Herald Tribune, August 2006.

[24] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin.
XenSocket: A high-throughput interdomain transport for
VMs. Technical Report RC24247, IBM Research, 2007.

7


