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Abstract

Direct-threaded interpreters use indirect branches to dis-
patch bytecodes, but deeply-pipelined architectures rely on
branch prediction for performance. Due to the poor cor-
relation between the virtual program’s control flow and the
hardware program counter, which we call the context prob-
lem, direct threading’s indirect branches are poorly pre-
dicted by the hardware, limiting performance. Our dispatch
technique, context threading, improves branch prediction
and performance by aligning hardware and virtual machine
state. Linear virtual instructions are dispatched with na-
tive calls and returns, aligning the hardware and virtual PC.
Thus, sequential control flow is predicted by the hardware
return stack. We convert virtual branching instructions to
native branches, mobilizing the hardware’s branch predic-
tion resources. We evaluate the impact of context thread-
ing on both branch prediction and performance using inter-
preters for Java and OCaml on the Pentium and PowerPC
architectures. On the Pentium IV, our technique reduces
mean mispredicted branches by 95%. On the PowerPC, it
reduces mean branch stall cycles by 75% for OCaml and
82% for Java. Due to reduced branch hazards, context
threading reduces mean execution time by 25% for Java and
by 19% and 37% for OCaml on the P4 and PPC970, respec-
tively. We also combine context threading with a conserva-
tive inlining technique and find its performance comparable
to that of selective inlining.

1 Introduction

Interpretation is a powerful tool for implementing pro-
gramming language systems. It facilitates interactive pro-
gram development and debugging, compact and portable
deployment, and simple language prototyping. This com-
bination of features makes interpreted languages attractive
in many settings, but their applicability is constrained by
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poor performance compared to native code. Consequently,
many important systems, such as Sun’s HotSpot [1] and
IBM’s production Java virtual machine [21] run in mixed
mode, compiling and executing some parts of a program
while interpreting others. Baseline interpreter performance
thus continues to be relevant.

Recently, Ertl and Gregg observed that the performance
of otherwise efficient direct-threaded interpretation is lim-
ited by pipeline stalls and flushes due to extremely poor
indirect branch prediction [5]. Modern pipelined architec-
tures, such as the Pentium IV (P4) and the PowerPC (PPC),
must keep their pipelines full to perform well. Hardware
branch predictors use the native PC to exploit the highly-
biased branches found in typical (native code) CPU work-
loads [10, 13]. Direct-threaded virtual machine (VM) inter-
preters, however, are not typical workloads. Their branches’
targets are unbiased and therefore unpredictable [5]. For an
interpreted program, it is the virtual program counter (or
vPC) that is correlated with control flow. We therefore pro-
pose to organize the interpreter so that the native PC cor-
relates with the vPC, exposing virtual control flow to the
hardware.

We introduce a technique based on subroutine threading,
once popular in early interpreters for languages like Forth.
To leverage return address stack prediction. we implement
each virtual instruction as a subroutine which ends in a na-
tive return instruction. Note, however, that these subrou-
tines are not full-fledged functions in the sense of a higher-
level programming language such as C (no register save/re-
store, stack frame creation, etc.). When the instructions of
a virtual program are loaded by the interpreter, we trans-
late them to a sequence of call instructions, one per virtual
instruction, whose targets are these subroutines. Virtual in-
structions are then dispatched simply by natively execut-
ing this sequence of calls. The key to the effectiveness of
this simple approach is that at dispatch time, the native PC
is perfectly correlated with the virtual PC. Thus, for non-
branching bytecodes, the return address stack in modern
processors reliably predicts the address of the next byte-
code to execute. Because the next dynamic instruction is



not generally the next static instruction in the virtual pro-
gram, branches pose a greater challenge, For these virtual
instructions, we provide a limited form of specialized inlin-
ing, replacing indirect with relative branches, thus exposing
virtual branches to the hardware’s branch predictors.

We review techniques for virtual instruction dispatch in
interpreters, describe their performance problems, and de-
fine the context problem in Section 2. Then, we discuss
other work on improving dispatch performance in Section 3.
We provide relevant details of our implementations in a Java
virtual machine (SableVM) and the OCaml interpreter on
the Pentium IV and Power PC architectures in Section 4.
Using an extensive suite of benchmarks for both Java and
OCaml, we evaluate context threading in Section 5.

This paper makes the following contributions:

• We introduce a new dispatch technique for virtual ma-
chine interpreters that dramatically improves branch
prediction and demonstrate that our technique does not
depend on a specific language or CPU architecture.

• We show context threading is effective. On both the P4
and the PPC970, it eliminates 25% of the mean elapsed
time of Java benchmarks, with individual benchmarks
running twice as fast as with direct threading. For
OCaml, we achieve a 20% reduction in the mean ex-
ecution time on the P4 and a 35% reduction on the
PPC970 with some benchmarks achieving as much as
40% and 50%, respectively.

• We show that context threading is compatible with in-
lining, using a simple heuristic that we call Tiny Inlin-
ing. On OCaml, we achieve speedups relative to di-
rect threading of at least 10% over context threading
alone. On Java, we perform as well as or better than
SableVM’s implementation of selective inlining.

2 The Context Problem

An interpreter executes a virtual program by dispatching
its virtual instructions in sequence. The current instruction
is indicated by a virtual program counter, or vPC. The vir-
tual program consists of a list of virtual instructions, each
consisting of an opcode and zero or more operands. The
exact representation of the virtual program depends on the
dispatch technique used.

A typical switch dispatched interpreter, implemented in
C, is a for loop which fetches the opcode at vPC, and then
executes a switch statement, each opcode being imple-
mented by a separate case block, (the opcode body, or
body). However, switch dispatch is considerably slower
than the start-of-the-art, direct-threaded dispatch [7].

As shown in Figure 1, a direct threaded interpreter rep-
resents virtual program instructions as a list of addresses.

vPC

INST_GOTO:

  goto *vPC++;
  arg0 = *vPC; vPC=arg0;
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push 7

print
done

mul

&INST_PUSH

&INST_PUSH
7
&INST_MUL
&INST_PRINT
&INST_DONE

...

...

  goto *vPC++;
...

  goto *vPC++;
...

...
INST_PRINT:

INST_DONE:

INST_MUL:

INST_PUSH:
0

4

5
  goto *vPC++;

  exit; #the end
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Figure 1. Direct Threaded VM Interpreter

mov eax = (rvPC) lwz r0 = 0(rvPC)
addl 4,rvPC mtctr r0
jmp *eax addi rvPC,rvPC,4

bctr
(a) Pentium IV assembly (b) Power PC assembly

Figure 2. Direct Threaded Dispatch

Each address points to the opcode body. We refer to this list
as the Direct Threading Table, or DTT. The operands are
also stored in this list, immediately after the correspond-
ing opcode address. The vPC points into the DTT to in-
dicate the instruction to be executed. Note that, for each
body, there are potentially many virtual instructions using
that body. In the figure, for example, both INST PUSH in-
structions point to a single body. The actual dispatch to the
next instruction is accomplished by the goto *vPC++ at
the end of each opcode body, which is supported by GNU
C’s labels-as-values extensions. In Figure 2, we show the
assembly code corresponding to this dispatch statement for
the Pentium IV and PowerPC architectures.

When executing the indirect branch in Figure 2(a) the
Pentium IV will speculatively dispatch instructions using
a predicted target address. The PowerPC uses a differ-
ent strategy for indirect branches, as shown in Figure 2(b).
First the target address is loaded into a register, and then a
branch is executed to this register address. Rather than spec-
ulate, the PowerPC stalls until the target address is known,
although other instructions may be scheduled between the
load and the branch to reduce or eliminate these stalls.

Stalling and incorrect speculation are serious pipeline
hazards. To perform at full speed, modern CPU’s need to
keep their pipelines full by correctly predicting branch tar-
gets. Indirect branch predictors assume that the destination
of an indirect branch is highly correlated with the address
of the branch instruction itself. As observed by Ertl [5, 6],
this assumption is usually wrong for direct threaded in-
terpreter workloads. In a direct-threaded implementation,
there is only one jump instruction per virtual opcode imple-



mented. For example, in Figure 1, there are two instances
of INST PUSH. In the context of vPC=0, the dispatch at
the end of the INST PUSH body results in a native indirect
branch back to the start of the INST PUSH body (since the
next virtual instruction at vPC=2 is also an INST PUSH).
However, the target of the same native indirect branch in
the context of vPC=2 is determined by the address stored
at vPC=4, which in this example is an INST MUL opcode.
Thus, the target of the indirect branch depends on the vir-
tual context—the vPC—rather than the hardware pc of the
branch, causing the hardware to speculate incorrectly or not
at all. We refer to this lack of correlation between the native
PC and the vPC as the context problem.

3 Related Work

Much of the work on interpreters has focused on the dis-
patch problem. Kogge [12] remains a definitive description
of many threaded code dispatch techniques. These can be
divided into two broad classes: those which refine the dis-
patch itself, and those which alter the bodies so that there
are more efficient or simply fewer dispatches. Switch and
direct threading belong to the first class, as does subroutine
threading, discussed next. Later, we will discuss superin-
structions and replication, which are in the second class.
We are particularly interested in subroutine threading and
replication because they both provide context to the branch
prediction hardware.

Some Forth interpreters use subroutine-threaded dis-
patch. Here, the program is not represented as a list of
body addresses, but instead as a sequence of native calls
to the bodies, which are then constructed to end with na-
tive returns. Curley [3, 4] describes a subroutine-threaded
Forth for the 68000 CPU. He improves the resulting code by
inlining small opcode bodies, and converts virtual branch
opcodes to single native branch instructions. He cred-
its Charles Moore, the inventor of Forth, with discovering
these ideas much earlier. Outside of Forth, there is lit-
tle thorough literature on subroutine threading. In partic-
ular, few authors address the problem of where to store vir-
tual instruction operands. In Section 4, we document how
operands are handled in our implementation of subroutine
threading.

The choice of optimal dispatch technique depends on the
hardware platform, because dispatch is highly dependent on
micro-architectural features. On earlier hardware, call and
return were both expensive and hence subroutine thread-
ing required two costly branches, versus one in the case of
direct threading. Rodriguez [17] presents the tradeoffs for
various dispatch types on several 8 and 16-bit CPUs. For
example, he finds direct threading is faster than subroutine
threading on a 6809 CPU, because the JSR and RET instruc-
tion require extra cycles to push and pop the return address

stack. On the other hand, Curley found subroutine thread-
ing faster on the 68000 [3]. On modern hardware the cost
of the call and return is much lower, due to return branch
prediction hardware, while the cost of direct threading has
increased due to misprediction. In Section 5 we demon-
strate this effect on several modern CPUs.

Superinstructions reduce the number of dispatches. Con-
sider the code to add a constant integer to a variable. This
may require loading the variable onto the stack, loading the
constant, adding, and storing back to the variable. VM de-
signers can instead extend the virtual instruction set with a
single superinstruction that performs the work of all four
instructions. This technique is limited, however, because
the virtual instruction encoding (often one byte per opcode)
may allow only a limited number of instructions, and the
number of desirable superinstructions grows exponentially
in the number of subsumed atomic instructions. Further-
more, the optimal superinstruction set may change based
on the workload. One approach uses profile-feedback to
select and create the superinstructions statically (when the
interpreter is compiled [8]).

Piumarta [15] presents selective inlining. It constructs
superinstructions when the virtual program is loaded. They
are created in a relatively portable way, by memcpy’ing the
native code in the bodies, again using GNU C labels-as-
values. This technique was first documented earlier [19],
but Piumarta’s independent discovery inspired many other
projects to exploit selective inlining. Like us, he applied his
optimization to OCaml, and reports significant speedup on
several microbenchmarks. As we discuss in Section 5.4, our
technique is separate from, but supports and indeed facili-
tates, inlining optimizations.

Only certain classes of opcode bodies can be relocated
using memcpy alone—the body must contain no pc-relative
instructions (typically this excludes C function calls). Se-
lective inlining requires that the superinstruction starts at
a virtual basic block, and ends at or before the end of
the block. Ertl’s dynamic superinstructions [6] also use
memcpy, but are applied to effect a simple native compi-
lation by inlining bodies for nearly every virtual instruc-
tion. Ertl shows how to avoid the virtual basic block con-
straints, so dispatch to interpreter code is only required for
virtual branches and un-relocatable bodies. Catenation [24]
patches Sparc native code so that all implementations can be
moved, specializes operands, and converts virtual branches
to native, thereby eliminating the virtual program counter.

Replication—creating multiple copies of the opcode
body—decreases the number of contexts in which it is exe-
cuted, and hence increases the chances of successfully pre-
dicting the successor [6]. Replication implemented by in-
lining opcode bodies reduces the number of dispatches, and
therefore, the average dispatch overhead [15]. In the ex-
treme, one could create a copy for each instruction, elimi-



nating misprediction entirely. This technique results in sig-
nificant code growth, which may [24] or may not [6] cause
cache misses.

In summary, misprediction of the indirect branches used
by a direct threaded interpreter to dispatch virtual instruc-
tions limits its performance on modern CPUs because of the
context problem. We have described several recent dispatch
optimization techniques. Some of the techniques improve
performance of each dispatch by reducing the number of
contexts in which a body is executed. Others reduce the
number of dispatches, possibly to zero.

Dynamo [2] is a system for trace-based runtime opti-
mization of arbitrary programs. Its optimizations include
replacing indirect branches with guarded linear control flow.
One would expect this to be highly applicable to threaded
interpreters. Sullivan et al. [22] applied Dynamo to a Java
VM, but found it faired poorly. This was due to the con-
text problem—it could not distinguish between the differ-
ent runtime contexts of a bytecode body. The solution was
to detect traces using a <pc,vPC> tuple, instead of only
pc. Our technique, while simpler, accomplishes the same
thing. In the following section we will describe how we
address the context problem directly, by devirtualizing the
interpreter’s control flow and thus exposing virtual execu-
tion to native branch prediction resources.

4 Design and Implementation

Direct-threaded interpreters are known to have very poor
branch prediction properties, however, they are also known
to have a small cache footprint (for small to medium sized
opcode bodies) [18]. Since both branches and cache misses
are major pipeline hazards, we would like to retain the
good cache behavior of direct-threaded interpreters while
improving the branch behavior. The preceding section de-
scribes various techniques for improving branch prediction
by replicating entire bodies. The effect of these techniques
is to trade instruction cache size for better branch predic-
tion. Ertl [6] claims that for Forth, with small opcode bod-
ies, code growth occurs but does not cause cache-related
stalls. Vitale and Abdelrahman [24] find that, with larger
opcode bodies, code growth from replication does induce
cache-misses. We believe it is best to avoid growing code
if possible. We introduce a new technique which minimally
affects code size and produces dramatically fewer branch
mispredictions than either direct threading or direct thread-
ing with inlining.

In this section we motivate our design in terms of align-
ing virtual machine context with physical machine context,
and outline our implementation.

vPC
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Program bytecode
created by compiler
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loader

push 11
push 7

print
done

mul

&(CTT[1])

&(CTT[2])
&(CTT[3])

  goto *vPC++

  RET
...

  exit; #the end
...

  RET
...

  RET
...

...
INST_PRINT:

INST_DONE:

INST_MUL:

INST_PUSH:

7

11

&(CTT[4])

INST_GOTO:
  arg0=*vPC; vPC=arg0;

Direct Threading Table
(DTT)

CALL INST_PUSH
CALL INST_PUSH
CALL INST_MUL

CALL INST_DONE
CALL INST_PRINT

Context Threading Table
(CTT)

Virtual Program Stack

Opcode Implementation Bodies

&(CTT[0])0

6
5
4
3
2
1

0

Figure 3. Subroutine Threaded VM Interpreter

4.1 Understanding Branches

To motivate our design, first note that the virtual pro-
gram may contain all the usual types of control flow: con-
ditional and unconditional branches, indirect branches, and
calls and returns. We must also consider the dispatch of
straight-line virtual instructions. For direct-threaded inter-
preters, sequential (virtual) execution is just as expensive as
handling control transfers, since all virtual instructions are
dispatched with an indirect branch. Second, note that the
dynamic execution path of the virtual program will contain
patterns (loops, for example) that are similar in nature to
the patterns found when executing native code. These con-
trol flow patterns originate in the algorithm that the virtual
program implements, whether it is interpreted or compiled.

Finally, note that modern microprocessors have consid-
erable resources devoted to identifying these patterns in na-
tive code, and exploiting them to predict branches. In fact,
the hardware provides different types of predictors to sup-
port different types of native branches. Unfortunately, direct
threading uses only indirect branches and, due to the con-
text problem, the patterns that exist in the virtual program
are effectively hidden from the microprocessor.

The fundamental goal of our approach is to expose these
virtual control flow patterns to the hardware, such that the
physical execution path matches the virtual execution path.
To achieve this goal, we exploit the different types of hard-
ware prediction resources to handle the different types of
virtual control flow transfers. In Section 4.2 we show how
to replace straight-line dispatch with subroutine threading.
In Section 4.3 we show how to inline conditional and indi-
rect jumps and in Section 4.4 we discuss handling virtual
calls and returns with native calls and returns. We strive
to maintain the property that the virtual program counter is
precisely correlated with the physical program counter and
in fact, with our technique there is a one-to-one mapping
between them at control flow points.



4.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is the
largest single source of branches when executing an inter-
preter. Any technique that hopes to improve branch pre-
diction accuracy must thus address dispatch. The obvious
solution is inlining, as it eliminates the dispatch entirely for
straight-line sequences of virtual instructions. Inlining also
has other benefits, such as enabling optimizations across the
implementations of multiple virtual instructions. The in-
crease in code size caused by aggressive inlining, however,
has the potential to overwhelm the benefits with the cost of
increased instruction cache misses.

Rather than eliminate dispatch, we propose an alterna-
tive organization for the interpreter in which native call and
return instructions are used. Conceptually, this approach is
elegant because subroutines are a natural unit of abstraction
to express the implementations of virtual instructions.

Figure 3 illustrates our implementation of subroutine
threading, using the same example program as Figure 1.
In this case, we show the state of the virtual machine af-
ter the first virtual instruction has been executed (note that
the virtual program stack now contains the value “11”). We
add a new structure to the interpreter architecture, called the
Context Threading Table (CTT), which contains a sequence
of native call instructions. Each native call dispatches the
body for its virtual instruction. We use the term Context
Threading, because the hardware address of each call in-
struction in the CTT provides execution context to the hard-
ware, most importantly, to the branch predictors. Each non-
branching opcode body now ends with a native return in-
struction, while opcodes that modify the virtual control flow
end with an indirect jump, as in direct-threading. The Di-
rect Threading Table (DTT) is still necessary to store imme-
diate virtual operands, and to correctly resolve virtual con-
trol transfer instructions. In direct threading, entries in the
DTT point to opcode bodies, whereas in subroutine thread-
ing they refer to call sites in the CTT.

It seems counterintuitive to improve dispatch perfor-
mance by calling each body. It is not obvious whether a call
to a constant target is more or less expensive to execute than
an indirect jump, but that is not the issue. Modern micro-
processors contain specialized hardware to improve the per-
formance of call and return— specifically, a return address
stack that predicts the destination of the return to be the
instruction following the corresponding call. Although the
cost of subroutine threading is two control transfers, versus
one for direct threading, this cost is outweighed by the ben-
efit of eliminating a large source of unpredictable branches.

4.3 Handling Virtual Branches

Subroutine threading handles the branches that are in-
duced by the dispatch of straight-line virtual instructions,
however, the actual control flow of the virtual program is
still hidden from the hardware. That is, bodies of opcodes
that affect the virtual control flow still have no context.
There are two problems, one relating to shared indirect
branch prediction resources, and one relating to a lack of
history context for conditional branch prediction resources.

Consider the implementation of INST GOTO in Fig-
ure 3. Even for this simple unconditional virtual branch,
prediction is problematic, because all INST GOTO instruc-
tions in the virtual program share a single indirect branch in-
struction (and hence have a single prediction context). Con-
ditional virtual branches have the same problem. A sim-
ple solution is to generate replicas of the indirect branch
instruction in the CTT immediately following the call to the
branching opcode body. Branching opcode bodies now end
with native return, which transfers control to the replicated
indirect branch in the CTT. As a consequence, each virtual
branch instruction now has its own hardware context. We
refer to this technique as branch replication.

Branch replication is attractive because it is simple, and
produces the desired context with a minimum of replicated
instructions. However, it has a number of drawbacks. First,
for branching opcodes, we execute three hardware control
transfers (a call to the body, a return, and the actual branch),
which is an unnecessary overhead. Second, we still use the
overly general indirect branch instruction, even in cases like
INST GOTO where we would prefer a simpler direct native
branch. Third, by only replicating the dispatch part of the
virtual instruction, we do not take full advantage of the con-
ditional branch predictor resources provided by the hard-
ware. Due to these limitations, we only use branch replica-
tion for indirect virtual branches and exceptions.

For all other branches we fully inline the bodies of vir-
tual branch instructions into the CTT. We refer to this as
branch inlining. In the process of inlining, we convert in-
direct branches into direct branches, where possible. We
thus reduce pressure on the BTB, and instead exploit the
conditional branch predictors. In particular, the virtual con-
ditional branches now appear as real conditional branches
to the hardware. The primary cost of branch inlining is in-
creased code size, but this is modest because virtual branch
instructions are simple and have small bodies. For instance,
on the Pentium IV, most branch instructions can be inlined
with no more than 10 words of additional space. Figure 4
shows an example of inlining the INST GOTO branch in-
struction. The figure also illustrates how we handle virtual
call/return control flow, described next.
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  /* manipulate vPC */
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}

{
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...
CALL INST_CALL

CALL ...

JMP INST_RETURN

vPC = *vPC

(CTT)

INST_GOTO
opcode bodyJMP destination

CALL_INDIRECT callee...

/* opcodes in callee */
/* opcodes in callee */
/* opcodes in callee */

/* opcodes in callee */

Figure 4. Context Threaded VM Interpreter:
Branch and Return Inlining

4.4 Handling Virtual Call and Return

The only significant source of control transfers that re-
main in the virtual program are virtual calls and returns. For
successful branch prediction, the real problem is not the vir-
tual call, but rather the virtual return, because one virtual re-
turn may go back to multiple call sites. As noted previously,
the hardware already has an elegant solution to this problem
for native code in the form of the return address stack. We
need only to deploy this resource to predict virtual returns.

We describe our solution with reference to Figure 4. The
virtual call body should effect a transfer of control to the
start of the callee. We begin at a virtual call instruction (see
arrow labeled “1”). The virtual call body simply sets the
vPC to refer to the virtual callee and executes a native re-
turn to the next CTT location. Similar to branch replication,
we insert a new native call indirect instruction at this point
in the CTT to transfer control to the start of the callee (ar-
row “2”). This call indirect causes the next location in the
CTT to be pushed onto the hardware’s return address stack.
The first instruction of the callee is then dispatched (arrow
“3”). At the end of the callee, we modify the virtual return
instruction as follows. In the CTT, we emit a native di-
rect branch to dispatch the body of the virtual return (arrow
“4”.) Unlike using a native call for this dispatch, the direct
branch avoids perturbing the return address stack. We mod-
ify the body of the virtual return to end with a native return
instruction, which now transfers control all the way back
to the instruction following the original virtual call (arrow
“5”.) We refer to this technique as apply/return inlining1.

With this final step, we have a complete technique that
aligns all virtual program control flow with the correspond-
ing native flow. There are however, some practical chal-

1“apply” is the name of the (generalized) function call opcode in
OCaml

lenges to implementing our design for apply/return inlin-
ing. First, one must take care to match the hardware stack
against the virtual program stack. For instance, in OCaml,
exceptions unwind the virtual machine stack; the hardware
stack must be unwound in a corresponding manner. Sec-
ond, some run-time environments are extremely sensitive to
hardware stack manipulations, since they use or modify the
machine stack pointer for their own purposes (such as han-
dling signals). In such cases, it is possible to create a sepa-
rate stack structure and swap between the two at virtual call
and return points. This approach would introduce signifi-
cant overhead, and is only justified if apply/return inlining
provides a substantial performance benefit.

Having described our design and its general implementa-
tion, we now evaluate its effectiveness on real interpreters.

5 Experimental Evaluation

In this section, we evaluate the performance of context
threading and compare it to direct threading and direct-
threaded selective inlining. Context threading combines
subroutine threading, branch inlining and apply/return in-
lining. We evaluate the contribution of each of these tech-
niques to the overall impact of context threading using
two virtual machines and three microprocessor architec-
tures. We begin by describing our experimental setup in
Section 5.1. We then investigate how effectively our tech-
niques address pipeline branch hazards in Section 5.2, and
the overall effect on execution time in Section 5.3. Finally,
Section 5.4 demonstrates that context threading is comple-
mentary to inlining resulting in a portable, relatively simple,
technique that provides performance comparable to or bet-
ter than SableVM’s implementation of selective inlining.

5.1 Virtual Machines, Benchmarks and Platforms

OCaml We chose OCaml as representative of a class of
efficient, stack-based interpreters that use direct-threaded
dispatch. The bytecode bodies of the interpreter are very
efficient, and have been hand-tuned, including register al-
location. The implementation of the OCaml interpreter is
clean and easy to modify.

SableVM SableVM is a Java Virtual Machine built for
quick interpretation, implementing lazy method loading and
a novel bi-directional virtual function lookup table. Hard-
ware signals are used to handle exceptions. Most impor-
tantly for our purposes, SableVM already implements mul-
tiple dispatch mechanisms, including switch, direct thread-
ing, and selective inlining (which SableVM calls inline
threading) [9]. The support for multiple dispatch mecha-
nisms makes it easy to add context threading, and allows us



Table 1. Description of OCaml benchmarks
Pentium IV PowerPC 7410 PPC970 Lines

Branch Branch Elapsed of
Time Mispredicts Time Stalls Time Source

Benchmark Description (TSC*108) (MPT*106) (Cycles*108) (Cycles*106) (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903
fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187
fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23
genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682
kb A knowledge base program 17.9 42.9 9.5 283 0.96 611
nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231
quicksort Quicksort 9.94 20.1 7.2 264 0.70 91
sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55
soli A classic peg game 7.00 16.2 4.0 158 0.47 110
takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22
taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

Table 2. Description of SpecJVM benchmarks
Pentium IV PowerPC 7410 PPC970

Branch Branch Elapsed
Time Mispredicts Time Stalls Time

Benchmark Description (TSC*1011) (MPT*109) (Cycles*1010) (Cycles*108) (sec)
compress Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7
db performs multiple database functions 1.96 2.05 7.5 240 65.1
jack A Java parser generator 0.71 0.65 2.7 67 18.9
javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7
jess Java Expert Shell System 1.04 1.12 4.2 110 29.8
mpegaudio decompresses MPEG Layer-3 audio files 3.72 5.70 14.0 460 106.0
mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8
raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2
scimark performs FFT SOR and LU, ’large’ 4.40 6.32 18.0 690 118.1
soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

to compare it against a selective inlining implementation,
which we believe is a more complicated technique.

OCaml Benchmarks The benchmarks in Table 1 con-
stitute the complete standard OCaml benchmark suite2.
Boyer, kb, quicksort and sieve are mostly integer process-
ing, while nucleic and fft are mostly floating point bench-
marks. Soli is an exhaustive search algorithm that solves
a solitaire peg game. Fib, taku, and takc are tiny, highly-
recursive programs which calculate integer values. These
three benchmarks are unusual because they contain very
few distinct virtual instructions, and often contain only one
instance of each. These features have two important con-
sequences. First, the indirect branch in direct-threaded dis-
patch is relatively predictable. Second, even minor changes
can have dramatic effects (both positive and negative) be-

2ftp://ftp.inria.fr/INRIA/Projects/cristal/
Xavier.Leroy/benchmarks/objcaml.tar.gz

cause so few instructions contribute to the behavior.

SableVM Benchmarks SableVM experiments were run
on the complete SPECjvm98 [20] suite (compress, db, mpe-
gaudio, raytrace, mtrt, jack, jess and javac), one large object
oriented application (soot [23]) and one scientific applica-
tion (scimark [16]). Table 2 summarizes the key character-
istics of these benchmarks.

Pentium IV Measurements The Pentium IV (P4) pro-
cessor aggressively dispatches instructions based on branch
predictions. As discussed in Section 2, the taken indirect
branches used for direct-threaded dispatch are often mispre-
dicted due to the lack of context. Ideally, we would mea-
sure the mispredict penalty for these branches to see their
effect on execution time, but the P4 does not have a counter
for this purpose. Instead, we count the number of mis-
predicted taken branches (MPT) to show how effectively
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(a) Pentium IV MPT (b) PPC7410 lr/ctr stalls

Figure 5. OCaml Pipeline Hazards Relative to Direct Threading

context threading improves branch prediction. We measure
time on the P4 with the cycle-accurate time stamp counter
(TSC) register. We count both MPT and TSC events using
our own Linux kernel module, which collects complete data
for the multithreaded Java benchmarks3.

PowerPC Measurements We need to characterize the
cost of branches differently on the PowerPC than on the P4,
as these processors do not typically speculate on indirect
branches4. Instead, split branches are used (as shown in
Figure 2(b)) and the PPC stalls in the branch unit until the
branch destination is known. Hence, we would like to count
the number of cycles stalled due to link and count register
dependencies. Fortunately, the older PPC7410 CPU has a
counter (counter 15, “stall on LR/CTR dependency”) that
provides exactly this information [14]. On the PPC7410,
we also use the hardware counters to obtain overall ex-
ecution times in terms of clock cycles. We expect that
the branch stall penalty should be larger on more deeply-
pipelined CPUs like the PPC970, however, we cannot di-
rectly count these stall cycles on this processor. Instead, we
report only elapsed execution time for the PPC970.

Interpreting the data In presenting our results, we nor-
malize all experiments to the direct threading case, since it
is the baseline state-of-the art dispatch technique. We give
the absolute execution times and branching characteristics
for each benchmark and platform using direct threading in
Tables 1 and 2. Bar graphs in the following sections show
the contributions of each component of our technique: sub-
routine threading only (labeled SUB); subroutine threading

3MPT events are counted with performance counter 8 by setting the P4
CCCR to 0x0003b000 and the ESCR to value 0xc001004 [11]

4A “hint bit” can be used to encourage speculation in later models like
the PPC970 but it is not used by default.

plus branch inlining and branch replication for exceptions
and indirect branches (labeled BRANCH); and our complete
context threading implementation which includes apply/re-
turn inlining (labeled CONTEXT). We include bars for se-
lective inlining in SableVM (labeled SELECT) and our own
simple inlining technique (labeled TINY) to facilitate com-
parisons, although inlining results are not discussed until
Section 5.4. We do not show a bar for direct threading be-
cause it would have height 1.0, by definition.

5.2 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual program
state with physical machine state to improve branch pre-
diction and reduce pipeline branch hazards. We begin our
evaluation by examining how well we have met this goal.

Figure 5 reports the extent to which context threading re-
duces pipeline branch hazards for the OCaml benchmarks,
while Figure 6 reports these results for the Java benchmarks
on SableVM. On the left of each Figure, the graphs la-
beled (a) present the results on the P4, where we count
mispredicted taken branches (MPT). On the right, graphs
labeled (b) present the effect on LR/CTR stall cycles on the
PPC7410. The last cluster of each bar graph reports the ge-
ometric mean across all benchmarks.

Context threading eliminates most of the mispredicted
taken branches (MPT) on the Pentium IV and LR/CTR stall
cycles on the PPC7410, with similar overall effects for both
interpreters. Examining Figures 5 and 6 reveals that subrou-
tine threading has the single greatest impact, reducing MPT
by an average of 75% for OCaml and 85% for SableVM on
the P4, and reducing LR/CTR stalls by 60% and 75% on
average for the PPC7410. This result matches our expec-
tations because subroutine threading addresses the largest
single source of unpredictable branches—the dispatch used
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Figure 6. SableVM Pipeline Hazards Relative to Direct Threading

for all straight-line bytecodes. Branch inlining has the next
largest effect, again as expected, since conditional branches
are the most significant remaining pipeline hazard after ap-
plying subroutine threading. On the P4, branch inlining
cuts the remaining MPTs by about 60%. On the PPC7410
branch inlining has a smaller, though still important effect,
eliminating about 25% of the remaining LR/CTR stall cy-
cles. A notable exception to the MPT trend occurs for the
OCaml benchmarks fib, takc and taku. In these tiny, recur-
sive benchmarks de-virtualizing the conditional branches
hurts prediction by a small amount. As noted previously,
even minor changes in the behavior of a single instruction
can have a noticeable impact for these benchmarks.

Interestingly, the same OCaml benchmarks that are a
challenge for branch inlining on the P4 also reap the greatest
benefit from apply/return inlining, as shown in Figure 5(a).
Due to the recursive nature of these benchmarks, their per-
formance is dominated by the behavior of virtual calls and
returns. Thus, mapping these operations to native calls and
returns has an enormous impact. For sieve, on the P4, the
result of apply/return inlining is an increase in MPT, while
for the non-recursive OCaml benchmarks, the overall effect
on both platforms is a small improvement.

For SableVM on the P4, however, apply/return inlining
is restricted by the fact that SableVM uses the processor’s
esp register. Rather than implement a complicated stack
switching technique as discussed in Section 4.4, we allow
the virtual and machine stacks to become mis-aligned when
SableVM manipulates the esp directly. This increases the
overhead of our apply/return inlining implementation and
reduces the effectiveness of the return address stack predic-
tor, as can be seen in the bar labeled CONTEXT in Fig-
ure 6(a). On the PPC7410, the effect of apply/return inlin-
ing on LR/CTR stalls is very small for SableVM.

Having shown that our techniques can significantly re-

duce pipeline branch hazards, we now examine the impact
of these reductions on overall execution time.

5.3 Performance

Context threading improves branch prediction, resulting
in increased pipeline usage on both the P4 and the PPC.
However, using a native call/return pair for each dispatch
increases instruction overhead. In this section, we examine
the net result of these two effects on overall execution time.
As before, all data is reported relative to direct threading.

Figures 7 and 8 show results for the OCaml and
SableVM benchmarks respectively. They are organized in
the same way as the previous section, with P4 results on
the left, labeled (a), and PPC7410 results on the right, la-
beled (b). Figure 9 reports the performance of OCaml and
SableVM on the PPC970 CPU. The geometric means (right-
most cluster) in Figures 7, 8 and 9 show that context thread-
ing significantly outperforms direct threading on both vir-
tual machines and on all three architectures. The geomet-
ric mean execution time of the Ocaml VM is about 19%
lower for context threading than direct threading on P4, 9%
lower on PPC7410, and 39% lower on the PPC970. For
SableVM, context threading, compared with direct thread-
ing, runs about 17% faster on the PPC7410 and 26% faster
on both the P4 and PPC970. Although we cannot measure
the cost of LR/CTR stalls on the PPC970, the greater reduc-
tions in execution time are consistent with its more deeply-
pipelined design (23 stages vs. 7 for the PPC7410).

Across interpreters and architectures, the effect of our
techniques is clear. Subroutine threading has the single
largest impact on elapsed time. Branch inlining has the
next largest impact eliminating an additional 3–7% of the
elapsed time. In general, the reductions in execution time
track the reductions in branch hazards seen in Figures 5 and
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Figure 8. SableVM Elapsed Time Relative to Direct Threading
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6. The instruction overheads of our dispatch technique are
most evident in the OCaml benchmarks fib and takc on the
P4 where the benefits of improved branch prediction (rela-
tive to direct threading) are minor. In these cases, the op-
code bodies are very small and the extra instructions exe-
cuted for dispatch are the dominant factor.

The effect of apply/return inlining on execution time
is minimal overall, changing the geometric mean by only
±1% with no discernible pattern. Given the limited perfor-
mance benefit and added complexity, a general implemen-
tation of apply/return inlining does not seem worthwhile.
Ideally, one would like to detect heavy recursion automati-
cally, and only perform apply/return inlining when needed.
We conclude that, for general usage, subroutine threading
plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is
complementary to inlining techniques.

5.4 Inlining

Inlining techniques address the context problem by repli-
cating bytecode bodies and removing dispatch code. This
reduces both instructions executed as well as pipeline haz-
ards. In this section we show that, although both selective
inlining and our context threading technique reduce pipeline
hazards, context threading is slower because of instruction
overhead. We address this issue by comparing our own tiny
inlining technique with selective inlining.

In Figures 6, 8 and 9(a) the bar labeled SELECT shows
our measurements of Gagnon’s selective inlining imple-
mentation for SableVM [9]. From these Figures, we see
that selective inlining reduces both MPT and LR/CTR stalls
significantly as compared to direct threading, but it is not
as effective in this regard as subroutine threading alone.
The larger reductions in pipeline hazards for context thread-
ing, however, do not necessarily translate into better per-
formance over selective inlining. Figure 8(a) illustrates
that SableVM’s selective inlining beats context threading
on the P4 by roughly 5%, whereas on the PPC7410 and the
PPC970, both techniques have roughly the same effect on
execution time, as shown in Figure 8(b) and Figure 9(a),
respectively. These results show that reducing pipeline haz-
ards caused by dispatch is not sufficient to match the per-
formance of selective inlining. By eliminating some dis-
patch code, selective inlining can do the same real work
with fewer instructions than context threading.

Context threading is only a dispatch technique, and can
be easily combined with inlining strategies. To investigate
the impact of dispatch instruction overhead and to demon-
strate that context threading is complementary to inlining,
we implemented Tiny Inlining, a simple heuristic that in-
lines all bodies with a length less than four times the length
of our dispatch code. This eliminates the dispatch over-

Table 3. Selective Inlining vs Context+Tiny
(SableVM)

Context Selective Tiny Δ Δ
Arch (C) (S) (T) (S-C) (S-T)
P4 0.762 0.721 0.731 −0.041 −0.010

PPC7410 0.863 0.914 0.839 0.051 0.075
PPC970 0.753 0.739 0.691 −0.014 0.048

head surrounding the smallest bodies and, as calls in the
CTT are replaced with comparably-sized bodies, tiny inlin-
ing ensures that the total code growth is minimal. In fact,
the smallest inlined OCaml bodies on P4 were smaller than
the length of a relative call instruction. Table 3 summarizes
the effect of tiny inlining. On the P4, we come within 1%
of SableVM’s sophisticated selective inlining implementa-
tion. On PowerPC, we outperform SableVM by 7.8% for
the PPC7410 and 4.8% for the PPC970.

The primary costs of direct-threaded interpretation are
pipeline branch hazards, caused by the context problem.
Context threading solves this problem by correctly deploy-
ing branch prediction resources, and as a result, outperforms
direct threading by a wide margin. Once the pipelines are
full, the secondary cost of executing dispatch instructions is
significant. A suitable technique for addressing this over-
head is inlining, and we have shown that context threading
is compatible with inlining using the “tiny” heuristic. Even
with this simple approach, context threading achieves per-
formance equivalent to, or better than, selective inlining.

6 Current and Future Work

At the time of writing, we have extended our con-
text threading technique with a general purpose framework
which allows for the safe execution of arbitrary instrumen-
tation code in between bytecodes. Within this framework,
we have implemented bytecode logging to assist with de-
bugging and several frequency and branch bias profilers.
We have developed a lazy linking technique that allows us
to dynamically add generated code segments. Using these
tools, we currently identify hot basic blocks, then regener-
ate and link them into the program on the fly. We intend to
use these capabilities to dynamically generate code for other
interesting compilation units including loop bodies, traces,
and whole methods.

7 Conclusions

Modern CPUs have deep pipelines which must be kept
full for them to perform well. Filling these pipelines re-
quires that the processor speculate on which instructions it



will be executing by predicting the direction or target of
branching instructions. Direct threaded interpreters use in-
direct branches to dispatch bytecode bodies. On older pro-
cessors this was efficient, but on modern processors these
branches are pipeline hazards causing either stalls or flushes
due to mispredictions, hurting performance.

Context threading improves performance by exposing
the virtual program’s control flow to the hardware, reduc-
ing pipeline hazards. For sequential bytecodes, we use sub-
routine threading, dispatching each bytecode with a rela-
tive call and predicting each successor with the return stack.
We inline the bodies of virtual conditional instructions, ex-
posing the virtual execution context to the hardware’s con-
ditional branch predictors. We also demonstrate a tech-
nique for improving prediction of virtual returns. We have
shown that our techniques eliminate a significant number
of pipeline branch hazards. We reduce mean branch mis-
predictions by 95% on the P4 and reduce mean LR/CTR
branch unit stall cycles by between 76% and 82% on the
PowerPC 7410. Relative to direct threading, context thread-
ing reduces mean elapsed time by 19 to 27% on the Pentium
IV, 14% on the PowerPC 7410 and by 20 to 37% on the
PowerPC 970.

Context threading performs better than direct threading
but worse than direct-threaded inlining. We implemented a
simple inlining scheme in which we inline only very small
bytecodes. On the P4 we come within 1% of SableVM’s
sophisticated selective inlining implementation. On the
PPC970 we outperform SableVM’s implementation of se-
lective inlining by 4.8%.

Context threading is easy to implement, and provides a
significant performance advantage over direct threading. It
addresses the main obstacle to high performance virtual in-
struction dispatch by exposing the virtual program’s con-
trol flow to the hardware’s control flow predictors. Fur-
thermore, the context threading technique is simple, so the
code remains flexible and supports other optimizations such
as inlining and code specialization. We thus conclude that
context threading is a better technique for baseline interpre-
tation and may be an attractive environment for dynamic
optimization.
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