
Mixed Mode Execution with Context Threading

Mathew Zaleski
Department of

Computer Science
University of Toronto
matz@cs.toronto.edu

Marc Berndl
Department of

Computer Science
University of Toronto

berndl@cs.toronto.edu

Angela Demke Brown
Department of

Computer Science
University of Toronto

demke@cs.toronto.edu

Abstract
Interpreters are widely used to implement portable
language runtime environments. Programs written
in these languages may benefit from performance
beyond that obtainable by optimizing interpretation
alone. A modern high-performance mixed-mode
virtual machine (VM) includes a method-based Just
In Time (JIT) compiler. A method-based JIT, how-
ever, requires the up-front development of a com-
plex compilation infrastructure before any perfor-
mance benefits are realized.

Ideally, the architecture for a mixed-mode VM
could detect and execute a variety of shapes of hot
regions of a virtual program. Our VM architecture
is based on context threading. It supports powerful,
efficient instrumentation and a simple framework
for dynamic code generation. It has the potential to
directly support a full spectrum of mixed-mode ex-
ecution: from interpreted bytecode bodies, to spe-
cialized bytecode generated at runtime, to traces, to
compiled methods. Further, it provides the neces-
sary tools to detect these regions at runtime.

We extended two VMs, SableVM and the OCaml
interpreter with our infrastructure on both the P4
and PPC. To demonstrate the power and flexibil-
ity of our infrastructure we compare the selection
and dispatch effectiveness for three common re-
gion shapes: whole methods, partial methods, and
SPECL traces. We report results for a preliminary
version of our code generator which compiles a re-
gion into a sequence of direct calls to bytecode bod-
ies.

Copyright c© 2005 Marc Berndl, Angela Demke Brown
and Mathew Zaleski. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

1 Introduction
There is a significant gap between the performance
of direct threaded interpretation and optimized,
mixed-mode, Just in Time (JIT) compiled native
code. Nevertheless, there are good reasons why the
users of relatively few interpreted languages enjoy
the benefits offered by a modern optimizing JIT. A
JIT translates and optimizes all the bytecodes of a
method, or, in many cases, an inlined method nest,
into native code. This means that the back end of
a JIT typically cannot be deployed until it supports
essentially all the features of the language it trans-
lates. As a result, adding a JIT to an interpreter
requires a large up-front investment in compilation
infrastructure before any performance benefits are
seen by users.

We claim what is needed is a virtual machine (VM)
architecture that enables developers to gradually de-
ploy specific performance improvements as they in-
crementally invest in infrastructure to support opti-
mization and native code generation. It should exe-
cute in mixed-mode and be able to generate native
code for variously shaped and sized regions: from
single bytecode bodies, to basic blocks, to traces, to
entire methods. Variably sized and shaped regions
allow VM developers to focus on regions of virtual
programs that manifest performance issues first. It
should be able to intersperse the execution of gen-
erated code with the dispatch of bytecode bodies.
This frees VM developers from needlessly generat-
ing code for language features that are complex or
unprofitable to compile. Finally, it should be rea-
sonably compatible with existing direct threaded
interpreters to facilitate retro-fitting existing imple-
mentations.

We believe that this challenge breaks down nat-
urally into two main concerns: performance and
function. It must be possible to generate high qual-
ity code for a region of virtual program regardless

1

of its shape. Since much research exists on how
to dynamically optimize methods we instead focus
on the problem of identifying, translating, linking
and executing variously shaped regions of a virtual
program.

In this paper, we introduce a new way of organizing
a mixed-mode VM. We show how variably shaped
regions can be identified and executed. Section 2
introduces the basics of interpretation. In addition,
we briefly describe Context Threading (CT), a set
of our own extensions and performance improve-
ments to interpretation [5]. Much of the approach
we describe below was informed by our experi-
ences as we built CT.

Section 3 describes related ways of optimizing in-
terpreter performance. Section 4 describes how we
have modified two direct threaded VMs (SableVM
1.18 and OCaml 3.08) on two platforms (P4 and
PPC) to select and translate hot regions of the vir-
tual program. Our system selects various shapes
of virtual program including: basic blocks, cached
basic blocks[13], traces [3], methods and partial
methods [23]. Once hot regions of the virtual pro-
gram are identified, we generate code for them us-
ing CT, which generates a sequence of call instruc-
tions to bytecode bodies. Consequently, the over-
all performance of our system is similar to subrou-
tine threading and is in no way competitive with
an aggressive JIT. We are actively working on an
optimizing code generator but are not yet in a posi-
tion to report performance results. In Section 5 we
report how the various shapes vary in their poten-
tial to maximize the time spent executing translated
code relative to the amount of code translated. We
report statistics reminiscent of those in [6].

2 Background
Interpreters execute a virtual program by dispatch-
ing its virtual instructions in sequence. The cur-
rent instruction is indicated by a virtual program
counter, orvPC. Each virtual instruction consists
of an opcode and zero or more operands. Since
the work of dispatch is a significant factor in inter-
preter performance, much effort has been made to
optimize it. In this section we briefly review two
traditional interpreter dispatch techniques (subrou-
tine threaded code and direct threaded code) and
our recently-introduced dispatch technique, con-
text threaded code.

2.1 Direct-threaded dispatch
As shown on the left of Figure 1, a direct-threaded
interpreter represents the instructions in a virtual

program as alist of addresses. We refer to the
block of implementation code as theopcode body,
or simplybody. Each address points to an opcode
body. We refer to this list as theDirect Thread-
ing Table, or DTT. Virtual instruction operands are
also stored in this list, immediately after the vir-
tual opcode address. ThevPC points into the DTT
to indicate the next virtual instruction to be exe-
cuted. Note that, for each body, there are poten-
tially many virtual instructions using that body. In
the figure, for example, both INSTPUSH instruc-
tions point to a single body. The actual dispatch to
the next instruction is expressed in GNU C using
its computed goto extension asgoto *vPC++ at
the end of each opcode body. Direct-threaded dis-
patch is faster than a simple switch-based dispatch
because it requires fewer control transfers, and with
the GCC extensions, it is as portable as GNU C it-
self. However, although direct-threading requires
only three instructions, it can still consume many
more machine cycles, because the indirect branch
may be poorly predicted and a pipeline hazard on
modern CPUs [10].

2.2 Subroutine-threaded dispatch
Subroutine threading is described in the Forth lit-
erature, sometimes with other names [8]. It is of-
ten described as interesting largely as a simple first
step towards generating native code [16, 9], which
is amenable to local transformations such as inlin-
ing and peephole optimization. Subroutine thread-
ing eschews an interpreter dispatch loop, instead
expressing the virtual program as a series of native
machinecall instructions to the virtual opcode
bodies. Each body must end with a nativereturn
instruction. The literature is not always clear on the
representation of virtual operands, nor handling of
virtual branches in the absence of a traditional dis-
patch loop.

Figure 1(b) illustrates our implementation of sub-
routine threading. In this case, we show the state of
the virtual machineafter the first virtual instruction
has been executed. We have added a new struc-
ture to the interpreter, called theContext Thread-
ing Table(CTT), which contains a sequence of na-
tive call instructions. Each non-branching op-
code body ends with a nativereturn instruction,
while opcodes that modify the virtual control flow
end with an indirect jump, as in direct-threading.
The Direct Threading Table (DTT) is still neces-
sary to store immediate operands to the virtual in-
structions, and to correctly resolve virtual control
transfer instructions. Whereas under direct thread-
ing entries in the DTT point to bodies, under CT

2

vPC

INST_GOTO:

 goto *vPC++;

 arg0 = *vPC; vPC=arg0;

vPC

11

 goto *vPC++

 RET

...

 exit; #the end

...

 RET

...

 RET

...

...
INST_PRINT:

INST_DONE:

INST_MUL:

INST_PUSH:

INST_GOTO:

 arg0=*vPC; vPC=arg0;

Opcode Implementation Bodies

Context Threaded VM Interpreter (Subroutine Threading Variant)

push 11

push 7

print

done

mul

Direct Threaded VM Interpreter

&INST_PUSH

11

&INST_PUSH

7

&INST_MUL

&INST_PRINT

&INST_DONE

...

...

 goto *vPC++;

...

 goto *vPC++;

...

...
INST_PRINT:

INST_DONE:

INST_MUL:

INST_PUSH:
0

1

2

3
 goto *vPC++;

 exit; #the end

4

Direct Threading Table (DTT)

Opcode Implementation Bodies

program
start

&(CTT[1])

&(CTT[2])

&(CTT[3])

&(CTT[0])

7

&(CTT[4])

1 CALL INST_PUSH

2 CALL INST_MUL

4 CALL INST_DONE

1

3 CALL INST_PRINT

0 CALL INST_PUSH

Context Threading Table (CTT)

Direct Threading Table (DTT)

(a) (b)

Figure 1: Direct threaded dispatch (a) compared to subroutine threaded dispatch (b) showing how
Direct Threading Table stores immediate arguments to virtual instructions and points to the imple-
mentation of each virtual instruction.

they instead refer to call sites.

The cost of subroutine threading is a longer dis-
patch path (as compared to direct-threading), how-
ever calls and returns are predicted reliably by hard-
ware on modern CPUs and the benefit of eliminat-
ing a large source of unpredictable branches out-
weighs this cost [5]. Direct threading and subrou-
tine threading present similar implementation diffi-
culties, however, subroutine threading requires the
generation of three native instructions (call, re-
turn andjump) making it somewhat less portable.

2.3 Context-threaded dispatch
Subroutine threading eliminates mispredicted
branches that are caused by the dispatch of
straightline virtual instructions, however, the ac-
tual control flow of the virtual program is still seen
by the hardware as unpredictable indirect branches.
The issue is that the bodies of opcodes that affect
the virtual control flow still have no context. The
basic solution is to generate the branching code
directly into the CTT (rather than dispatching the
opcode body), such that each virtual branch is
represented by a distinct hardware-visible branch
instruction. This allows the microprocessor to

deploy more of its branch predictor resources,
further reducing mispredictions and improving
performance.

While designing Context Threading (CT) we were
struck with the relative ease with which it was pos-
sible to cleanly integrate the generation and dis-
patch of small regions of code into the interpreters.
In retrospect we believe this was at least partially
due to the fortuitous combination of subroutine dis-
patch and the direct threading table (DTT). The
combination is a good one for three main rea-
sons. First, the availability of the direct thread-
ing table (DTT) and the virtual PC facilitatessoft
linking, whereby newly generated native code can
be dispatched by branching indirectly via entries
in the DTT. Second, the fact that bytecode bod-
ies are implemented as callable units makes gen-
erating code easier, as optimized generated code
can be interspersed with calls to existing bytecode
bodies. Third, the call/return structure of subrou-
tine threading returns control to generated code be-
tween the execution of each bytecode body. Nor-
mally one would expect the provision of convenient
interposition hooks to cost performance, but in fact
it is a free side-effect of subroutine threaded dis-

3

patch. We illustrate the way these factors work well
together by describing how they simplified some
aspects of our implementation of CT.

2.3.1 Generating forward branch code
Our implementation of CT uses soft linking and
self modifying code to simplify the implementation
of forward branches. When a CT interpreter loads a
method we wish to generate a direct branch instruc-
tion into the CTT for each virtual relative branch
instruction. However, a simple one-pass loader has
no way of knowing the destination of a forward vir-
tual branch. The obvious approach is to build a
two-pass or slightly more elaborate one-pass loader
that delays generating the forward branch until its
destination is known. However, by the time the
whole method is loaded the DTT slot correspond-
ing to the destination of each forward branch will
be correctly set. This suggests that generation of
the actual forward branch might be even simpler if
it is delayed until the virtual branch instruction is
actually executed for the first time.

For these reasons we implemented forward
branches in CT using self-modifying code instead.
Our CT enabled loader initially loads a forward vir-
tual branch as a direct call to a short trampoline.
The trampoline is called the first time the virtual
instruction is executed and hence can determine
the proper destination of the forward branch by in-
specting the DTT. The trampoline then rewrites the
direct call instruction as a direct branch to reach the
proper destination.

We describe these details because they illustrate a
scenario where simple dynamic infrastructure en-
ables static analysis (admittedly an almost trivial
two-pass loader in this case) to be replaced with
run-time instrumentation. It demonstrates how the
combination of the DTT, an up-to-datevPC and
code rewriting can be used to maintain the emerg-
ing flow graph of a virtual program.

2.3.2 Instrumentation and Profiling
When debugging and profiling our implementation
of CT we found that a convenient way to instrument
our interpreter was to generate a call to a C instru-
mentation function as part of the dispatch for every
virtual instruction. Profiling hooks are passed the
virtual address (DTT address) and physical address
(CTT address) of the virtual instruction about to be
dispatched. In addition each hook needs to learn
the address of a profiling data struct specific to each
virtual instruction. Typical systems use a hash table
to associate each virtual instruction with the profil-

ing data used to record its behavior. The problem
with this approach is that the hash table lookup will
likely cost more than the execution of many vir-
tual instructions. Instead, we generate code to pass
the address of the profiling structure as one of the
parameters of the C instrumentation function. We
expect (though we do not present data to prove it)
that this approach results in instrumentation that is
much faster than a hash table based implementa-
tion.

This experience informed the design of the approach
used to collect profiling information in support of
region selection as described in Section 4.

3 Related Work
Various techniques aim to optimize direct-threaded
interpretation by creating specialized versions of
bytecode bodies. In this section, we discuss sev-
eral dispatch optimizations, including replication,
superinstruction formation, selective inlining, cate-
nation, and trace-based optimization. Our infras-
tructure facilitates these techniques by providing
both a means to profile interpreted code to detect
regions of interest, and a means to create special-
ized versions of these regions.

Replication[11, 13] creates multiple copies of the
same body. In so doing the indirect branches that
dispatch to the next instruction are provided with
their own hardware context and are thus better pre-
dicted. Superinstructions[15, 12] combine com-
mon sequences of bodies, eliminating the dispatch
between them and generating a new dispatch with
the combined effect on thevPC at the end. Pi-
umarta and Riccardi’s [13]selective inliningcon-
structs superinstructions at load time. These are
created in a relatively portable way, bymemcpy’ing
the native code in the bodies, using GNU Cgoto
extensions. Our technique enables a runtime varia-
tion of selective inlining whereby we construct su-
perinstructions only after the linear blocks they are
derived from have run, as described in Section 4.3.2.

Catenation[22] inlines all bytecode bodies, propa-
gates immediate arguments, relocates calls and re-
places virtual branches with natives ones. The re-
sult is the elimination of the virtual program counter
and all dispatch. Vitale and Abdelrahman report
that inlining all Tcl bytecodes (which are relatively
large) caused instruction cache performance prob-
lems. Curley [8, 7] describes a subroutine-threaded
Forth for the 68000 CPU. He improves the code
by inlining small opcode bodies and converting vir-
tual branch opcodes to single native branches. Our

4

baseline context threading technique is similar to
subroutine threading with optimizations, described
by Curley; in this paper we present extensions that
enable dynamic profiling and more sophisticated
optimizations based on that profiling.

Significant work has gone into examining the spe-
cific problem of path profiling including the classic
work by Ball and Larus [4] which demonstrates an
efficient intra-procedural path profiling technique
using path enumeration. The problem of limiting
instrumentation overhead is often handled with sam-
pling. For example Traub et. al. suggest using
self-modifying code to periodically insert and re-
move profiler hooks [20]. Our technique naturally
enables this type of ephemeral profiling, as we de-
scribe in Section 4.3. Arnold et. al. suggest instead
that code versioning be used to control the execu-
tion of profiled code [2, 1].

Whaley’s partial method compilation technique [23]
finds thenot-rarebasic blocks within hot methods.
His dynamic optimizer identifies hot code in two
phases: first discovering hot methods, then flagging
the executed blocks in those methods. Counters are
placed at both method entry points and loop back
edges. When the method counter passes a thresh-
old the entire method is compiled using a base-
line compiler. Then, the baseline compiler resets
each counter and instruments all the method’s ba-
sic blocks so that they are flagged when executed.
When the method counter passes a second thresh-
old all code which was at some point executed is
considerednot-rare and compiled by the optimiz-
ing compiler. We describe our implementation of
partial method selection in Section 4.4.3

HP Dynamo [3] is a system for trace-based runtime
optimization of statically optimized binary code.
Dynamo emits native code corresponding to com-
monly executed dynamic sequences of instructions
detected using a speculative trace selection heuris-
tic called SPECL. One would expect that this opti-
mization would be highly applicable to threaded in-
terpreters. Sullivan et al. [19] tested this idea by ap-
plying Dynamo to a Java virtual machine. Initially
the resulting performance was poor because Dy-
namo could not distinguish between the different
runtime contexts of the various bytecodes. They
handled this problem by exposing thevPC to
Dynamo, giving it enough information to generate
traces across bodies. We present our implementa-
tion of SPECL trace selection in Section 4.4.1.

Software trace caches are efficient structures for
dynamic optimization. In [6] Bruening and Duester-

wald compare execution time coverage and code
size for three dynamic optimization units: method
bodies, loop bodies, and traces. They show that
method bodies require significantly more code size
to capture an equivalent amount of execution time
than either traces or loop bodies. Further, loop bod-
ies were able to capture more instruction stream
coverage than traces. However, unlike our imple-
mentation, their trace detection mechanism did not
inline method calls unless the entire method is com-
piled. In Section 5, we give a similar analysis com-
paring methods, traces and partial methods.

4 Design and Implementation
In this section, we describe how we modified two
direct threaded virtual machines, SableVM 1.1.8
and OCaml 3.08, on two platforms (P4 and PPC).
We describe the changes that were necessary to the
interpreters themselves and how we loaded, pro-
filed, and detected regions, as well as how we gen-
erated code.

The guiding principle behind our design is to main-
tain the ability to generate specialized code for flex-
ible program regions, and to switch between this
specialized code and baseline interpretation at des-
ignated program points, not just at method bound-
aries. As a secondary design principle, we sought
to defer work whenever possible. In some cases,
we can avoid the work altogether, saving both time
and space overheads. For example, there is no need
to instrument instructions that are never executed.
In other cases, performing work lazily allows us
to make use of dynamic information that was not
available earlier, as with the generation of code for
forward branches in context threading (described in
Section 2.3.1).

4.1 Key Infrastructure
There are three key pieces of our infrastructure that
together enable the flexible selection of program re-
gions and mixed mode execution: pure subroutine
threading, soft linking, and the insertion of gener-
ated code usinginterposers.

First, all bytecode bodies are implemented withpure
subroutine threading, which means that all bodies
end with a return instruction including those that
implement virtual branch instructions. As a conse-
quence, these branching bodies only update the vir-
tual PC (vPC) but must depend on generated code
following the return to actually perform the con-
trol transfer. Modifying the bytecode bodies in our
implementations was straightforward, partially be-
cause the VMs we used already ended bodies with

5

convenient C preprocessor macros. Thus, in many
cases we only needed to replace the macro defini-
tion. Note that we donot end each body with a
C languagereturn statement. Instead we make
use ofgcc language extensions to embed native
assembly instructions (theasm volatile state-
ment). On Intel hardware, each body executes a
nativeret instruction, while a nativeblr instruc-
tion is used on the Power PC.

The second critical piece of our infrastructure is
what we callsoft linking. This means simply that
the current implementation for any virtual instruc-
tion or program region can be dispatched by branch-
ing to the address stored in the corresponding slot
of the DTT. In our system, as in direct threading,
the vPC is a pointer into the DTT. Hence, when
we refer to the DTT element corresponding to the
current virtual instruction we more precisely mean
the DTT element referred to by the currentvPC.
The first element in the DTT for each virtual in-
struction is an address, followed by any arguments
needed by that instruction. In direct threading, the
address is that of the bytecode body to dispatch,
however, under CT it is the address of generated
code that dispatches the virtual instruction. This
is a subtle, but critical distinction. Because the
DTT now points to generated code instead of re-
ferring directly to bodies, we can insert arbitrary
code around the dispatch of every virtual instruc-
tion (which we call interposers). In our system,
we have decreed that the DTT and thevPC must
be valid on entry to generated native code regions.
Thus, we can always dispatch a virtual program re-
gion, whether it turns out to be a single body or
a large region, by branching to the address of the
DTT element indexed by the currentvPC. Initially,
the code that brackets the pure subroutine threaded
bodies ends with a soft link – an indirect branch
through the DTT – to reach the dispatch code for
the next virtual instruction. It is this mechanism
that allows virtual branch instructions to end with a
simple return after updating thevPC.

The final key piece of our infrastructure is the use
of interposersaround the “real work” of program
regions (recall that a region may be as small as an
individual bytecode body). The purpose of inter-
posers is to provide convenient hooks to call ar-
bitrary C functions at interesting program points.
The choice of interesting points evolves during the
execution of the program as regions of differing
shapes are detected and optimized code is gener-
ated for them. Initially, we consider every virtual
instruction “interesting”, since we have no infor-
mation about execution. The basic structure of a

pre-worker dispatch post-worker link

{

generated code

to call regular C function

with three parameters:

-virtual PC

-hardware PC

-int key

{

{

{generated code

to do real work, typically

to dispatch a bytecode body

generated code

to branch to next

virtual instruction

as pre-worker

except to a different

C function.

Figure 2: Interposers

generic interposer is shown in Figure 2. Conceptu-
ally, all interposers consist of pre- and post-workers
that bracket the real work of the region, followed by
a soft link to the next region. In practice, some of
these pieces may be omitted by particular flavours
of interposer.

The pre- and post-workers are regular C functions
which the interposers always call with the same
three parameter protocol. The first parameter is the
vPC, or in other words, the DTT slot correspond-
ing to the currently executing virtual instruction.
The second parameter is the real hardware PC, or
equivalently, the address of the start of the inter-
poser. Together, these first two parameters define a
point in the execution of the virtual program, and
allow the C function to inspect and modify either
the DTT or the interposer itself. We call the third
parameter the instrumentation worker’spayload. A
payload is an arbitraryint value that is generated
as part of the interposer. Example uses of this key
value are to identify the virtual opcode, or to pro-
vide the address of a profiling data structure to be
used by the worker function (as we describe in Sec-
tion 4.2).

In most cases, the real work is one or a series of
bytecode bodies; in the simplest case, it is a single
native call instruction to dispatch one of the pure
subroutine threaded bodies. In the following sec-
tions, we show how interposers are used to boot-
strap the execution of a virtual program, and as part
of our region selection mechanism.

4.2 Initialization and Dispatch
Having changed the virtual machines to support
subroutine threading, soft linking and interposers,
it was necessary to also modify the process of load-
ing a program or program method into the virtual
machine.

6

Direct Threading Table bytecode bodies

0

1

2

3

4

5

6

7

8

9

10

pre
dipatch

push
post link

pre
dipatch

goto
post link

11

7

10

push:

..

return

goto:

vPC=*vPC

return

vPC

push bootstrap interposer

bytecode

program

push 11

push 7

goto 10

mul

runtime code to

upgrade to discover mode

goto bootstrap interposer

Figure 3: System initialization using bootstrap interposers

Direct Threading Table bytecode bodies

0

1

2

3

4

5

6

7

8

9

10

pre
dispatch

push
post link

pre
dispatch

goto
post link

11

7

10

push:

..

return

goto:

vPC=*vPC

return

vPC

push discover interposer

bytecode

program

push 11

push 7

goto 10

mul

runtime code to

upgrade to linear region

goto discover interposer

pre
dispatch

push
post link

push discover interposer

Figure 4: System initialization showing discovery interposers

Conceptually, this process of loading a method
changes considerably. A direct threaded interpreter
builds a direct threading table, or DTT, for each
virtual method before it is run. For each vir-
tual instruction, this process maps the virtual op-
code to the address of the corresponding bytecode
body (entering this address in the DTT), and then
copies the immediate parameters for that instruc-
tion into the DTT. When loading is complete the di-
rect threaded interpreter executes a computed goto
to the first bytecode in a method and thereafter dis-
patch is handled by the bodies themselves. In con-
trast, a subroutine threaded bytecode body is dis-
patched by a direct call instruction – something
that can only be conveniently done from generated
code.

Our runtime has support for dynamic code gen-
eration so we can bootstrap more incrementally.
This is advantageous because we can quickly gen-

erate very simple code for each instruction as it
is loaded, while leaving hooks to add profiling or
generate optimized code for only those instructions
that are actually executed. Instead of generating a
native call for every virtual instruction as a method
is loaded, as we did in CT, we generate a small set
of bootstrap interposers, one for each virtual op-
code. The DTT entry for each virtual instruction
is set to point to the interposer corresponding to its
opcode. Figure 3 shows a fragment of a method
that has just been loaded, illustrating the relation-
ship between the DTT, bootstrap interposers, and
bytecode bodies. Note that the two instances of the
push instruction both link to same bootstrap in-
terposer. Because these interposers are per-opcode,
not per-instruction, there are many fewer of them to
generate, saving both time and space during load-
ing. The pre-worker for the bootstrap interposer is
a call to a function that can perform additional work
for those instructions that are executed; the integer

7

value passed to the worker in this case is the opcode
of the virtual instruction.

In our implementation, when the bootstrap inter-
poser for each virtual instruction is executed for the
first time, the pre-worker causes a new stub of in-
strumented dispatch code to be generated. Space is
allocated to hold per-instruction profiling data, and
the address of this structure is generated into the
new interposer to be passed to its pre-worker func-
tion. The virtual instruction’s DTT entry is then
overwritten with the address of the newly-generated
interposer. Other (unexecuted) instructions with the
same opcode continue to link to the original boot-
strap stub. Figure 4 illustrates a scenario where the
virtual instruction atvPC equal to 10 is about to
be executed for the first time. The twopush in-
structions and thegoto have executed once but
themul has not. Consequently, these three virtual
instructions are now implemented using discovery
interposers (note that the twopush instructions
now each have a distinct interposer) but themul is
still implemented by a bootstrap interposer. We de-
scribe the use of the discover interposer in detail in
the following section. Simple logging interposers
to support debugging could also replace the boot-
strap interposers.

4.3 Linear Regions
In the previous section, we described how inter-
posers are used to bootstrap code and how they
can dynamically be replaced. As a consequence,
the state of a virtual instruction is partially cap-
tured by the specific interposer that implements it
at any given instant in time. For instance, a boot-
strap interposer only executes once, the first time
each virtual instruction is dispatched. In this sec-
tion we describe how we exploit this aspect of our
system to identify linear regions. A linear region
is a linear sequence of virtual instructions ending
in a branch. They have only one entry point, so in
some cases they will be a concatenation of multi-
ple basic blocks from the flow graph of the virtual
program. In these cases, some virtual instructions
may appear in multiple linear regions. For exam-
ple, when execution falls through from one basic
block to its successor, our system may detect two
linear regions: one containing the concatenation of
the two blocks, and the other containing just the
successor.

4.3.1 Detection
Linear regions are identified by discovery interpos-
ers. The situation whereby execution reaches a dis-
covery interposer indicates one of two possible ac-

tions. First, if no linear region is currently being
collected then one should be started with the in-
struction as its entry point. Otherwise, the cur-
rent instruction should be added to the current lin-
ear region. When the discovery interposer for a
branching virtual instruction is encountered, exe-
cution has reached the last virtual instruction in the
current linear region. Code to implement the region
is then generated and the DTT slot corresponding
to the entry point of the region is rewritten to point
to the new code. Consequently the discovery in-
terposers for instructions in the region will never
be dispatched again, apart from exceptional control
flow.

We implement linear regions with alinear block
which does real work and aregion interposer that
wraps a native call to the linear block with further
instrumentation. The linear block is simply a se-
quence of direct call instructions – one to dispatch
each of the bytecode bodies identified as part of the
region. The linear block ends with a return. Hence,
it is reasonable to think of a linear block as the body
of a new, dynamically identified virtual instruction.

Figure 5 illustrates the situation after a linear block
has been built and is ready to execute. The DTT
slot corresponding to the entry point to the linear
region, atvPC 0 in the figure, is set to point to the
region interposer. This means that any code that
attempts to dispatch the virtual instruction at the
entry point of the newly installed region will dis-
patch the linear block instead. When all the virtual
instructions in the linear block have executed con-
trol returns to the region interposer, which links to
the destination indicated by thevPC. In the hypo-
thetical scenario of Figure 5 the linear region was
ended by agoto 10 and so the destination of the
final link will be whatever is pointed to by the tenth
slot of the DTT.

4.3.2 Sharing
Our block sharing strategy aims to identify when
a newly-detected linear region can reuse a linear
block created earlier. Our approach is to build an
association between sequences of virtual instruc-
tions and linear blocks using a hash table. To this
end we define a simple hash function that hashes
the virtual instructions in a linear region to an in-
teger. Then, as each linear region is identified, we
check the hash table to see if it has been seen be-
fore. If the current linear region is identical to one
in the hash table, we need not generate a new lin-
ear block. Instead, we generate only a new region
interposer wrapped around the (now) shared linear

8

Direct Threading Table bytecode bodiesgenerated code

push:

..

return

goto:

vPC=*vPC

return

linear region

...

goto

call

region

interposer

hook

bytecode

program
0

1

2

3

4

5

6

7

8

9

10

11

7

10

vPC

push 11

push 7

goto 10

mul ...

instrumentation code

call

call

Figure 5: Implementation of Linear Region

block found in the hash table. Our decision to break
the implementation of linear blocks into two inter-
posers was motivated by this sharing. The strat-
egy we adopt for shared linear blocks is similar to
that used by Piumarta and Riccardi for performing
selective inlining at load time [13]. In effect, our
shared linear blocks are run-time selective inlining.

4.3.3 Dynamic Linking
Although soft linking is very powerful, it is also
inefficient since indirect branches can strain the
branch prediction resources of a modern pipelined
CPU. Hence we would like to rewrite soft links as
direct branches whenever possible. We will refer
to direct branches used to link from one region of
generated code to another ashard links. We have
developed a mechanism, which we calllazy linking
to convert soft links into hard links at run time.

Individual bytecode bodies depend on the interpos-
ers that dispatch them to soft link (using an indi-
rect branch) to their successor. Similarly, regions
of generated code depend on their region interposer
to link to their successor. To this end, instead of
a soft link, a region interposer ends with a direct
branch to a lazy link interposer. The lazy link in-
terposer examines the predecessor and successor of
the edge and, if both are regions of generated code,
rewrites the predecessor to end with a hard link. In
fact, it is possible that the successor will be eventu-
ally be a generated region but the first time the lazy
link is executed it has yet to be generated. In this
case the lazy link interposer executes a soft link.

4.4 Selection of Larger Regions
Linear regions represent the simplest type of region
that can be detected and optimized. In this section

we show how larger regions with varying proper-
ties can be detected and generated using the same
infrastructure.

4.4.1 Traces
We have implemented run time selection of traces
using the SPECL heuristic described in [3]. Our
implementation investigates the selection and dis-
patch of traces. We do not currently generate qual-
ity native code for them, we implement them using
a CT-based approach. Whereas we implemented
linear regions using linear blocks (sequences of calls
to bytecode bodies), we implement traces astrace
blocks, which are sequences of calls to linear blocks.

In our system trace selection is very similar to lin-
ear region discovery. Trace selection is initialized
by instrumentation hooks called from the linear re-
gion interposer, as is illustrated in Figure 5. In-
strumentation examines thevPC set by each linear
region and, as called for by Dynamo’s SPECL trace
selection heuristic, if the branch is a reverse branch
(i.e. a smallervPC) it is counted. When the tar-
get becomes hot, trace generation begins. During
trace generation, linear regions are appended to a
list as they are visited. When a trace end condi-
tion is reached the region list is used to generate
the trace. Figure 6 illustrates the generated trace’s
structure. The similarity between trace blocks (se-
quences of dispatches of linear blocks) and linear
blocks (sequences of dispatches of bytecode bod-
ies) is striking. This is not an accident, it is an el-
egant consequence of packaging linear blocks and
bytecode bodies as callable regions of code.

Trace exits may occur between adjacent linear
blocks. Though the blocks in a trace tend to fol-

9

Direct Threading Table generated code

linear region

(bb_1)

...

trace interposer

linear region

(bb_3)

...
ret ret

link

texit1

texit3 linkbb_1hook ...te_1? bb_3

bb_1:

bb_2:

bb_3:

ifeq bb_3

linear region(bb_2)

...

link

call

region interposer(bb_2)

hook

to bodies

to bodies

to bodies

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 6: Implementation of a trace illustrating it is a sequence of linear blocks

low the particular execution path that occurred dur-
ing trace generation, at run time we must generate
guard code against execution diverging from that
path. Hence, after running each linear block, gen-
erated code checks if the next block to be executed
is in the trace. If not a trace exit must occur.

Recall that we have packaged all bytecode bodies
as pure subroutines. Thus, thevPC, as set by the
last (virtual branch) bytecode body in each linear
block, determines its successor. Hence, in our sys-
tem, we simply generate code into the trace block
that checks that thevPC is the one we expect. Con-
sider the trace exitte 1 illustrated by Figure 6; the
last virtual instruction executed by the first linear
block (bb 1) ends withifeq, a virtual conditional
branch. After the block corresponding tobb 1 re-
turns, it has either set thevPC to&DTT[9], the en-
try point of bb 3, or else it has diverged from the
trace by setting thevPC to &DTT[6]. The pres-
ence of a validvPC enables us to generate almost
trivial native code forte 1 – a compare immedi-
ate of thevPC to &DTT[9]. followed by a con-
ditional branch to a specifictrace exit interposer.
The SPECL heuristic requires us to generate a new
trace when a trace exit becomes hot. For this pur-
pose, a trace exit executes a trace profiling hook
and then lazy links to the off-trace code.

4.4.2 Hot Methods
Hot method selection is carried out by linear region
interposer instrumentation. Figure 5 illustrates how

a call to a block profiling hook is madebeforethe
dispatch of a linear block. Method selection is done
from a similar profiling hook interposedafter the
execution of each linear block. There, we detect
and count backwards branches (to detect methods
that may not be frequently called yet contain hot
loops) and entry points of new methods. Once a
method has been detected as hot, a potentially large
interposer is created with a direct call of the byte-
code body corresponding to each virtual instruction
in the method. This is the technique we describe as
subroutine threading in [5].

4.4.3 Partial Methods
Partial method selection is a heuristic described in
[23] designed to generate code for a method while
leaving out cold code. Partial methods are created
using a two stage process. First, the above method
selection heuristic is used to find hot methods. Sec-
ond, hot methods are instrumented such that ev-
ery basic block executed during some training pe-
riod (2000 invocations in our implementation) is
recorded. Third, the method is recompiled includ-
ing only blocks visited during the training period.

The first two stages of Whaley’s technique can be
implemented entirely in our instrumentation sys-
tem. First, method selection is used unmodified to
detect interesting methods. Second, while a method
is training, we record the blocks it touches from
the regular profiling hooks called by region inter-
posers. We side-step many compilation-related

10

pure subroutine threaded bytecode bodies..

CT code gen

CCG (i386 or ppc)

VM (ocaml 3.08 or sablevm 1.1.8)

Backend

Context Threading

Virtual Machine

dispatch &
interposer
generation

native code
cache
management

profiling &
instruments

Figure 7: Layered architectures of CT VM

challenges of the third stage above and use con-
text threading to build these methods. The result-
ing partial method interposer is almost identical to
a trace interposer. However, after dispatching each
linear block in the partial method we check thevPC
to ensure that execution remains in the partial meth-
od. If so, then a direct branch reaches the destina-
tion within the partial method interposer. If not,
then control branches to a method exit interposer.
Method exit interposers are similar to trace exits.

Having described the key components of our in-
frastructure and how they support the detection and
construction of different types regions, we now
briefly discuss some implementation details.

4.5 Software Organization
We organized our implementation into several lay-
ers as illustrated by Figure 7. The bulk of our soft-
ware exists below the virtual machine and supports
runtime code generation, profiling, and code man-
agement. The CT code generation layer defines a
machine independent interface that must be imple-
mented for each target CPU. We layered our code
generation backend, principally the generation of
interposers, on top of Piumarta’s CCG [?], a run-
time assembler. (CCG is a C preprocessor that con-
verts GNU syntax assembler into native code for
PPC and P4. It was originally designed to gener-
ate the bytecode bodies for Squeak [18], a portable
smalltalk [?] virtual machine.)

For example, thegenInterposer function is de-
clared with the same prototype on P4 and PPC but
is implemented in CCG for each platform sepa-
rately. Currently, we use CT to generate code for

regions (for instance linear blocks in Section 4.3.1)
of the virtual program. This generates a direct call
instruction to dispatch each bytecode body in a
region. Although this performs better than direct
threading, an optimizing code generator would im-
prove performance greatly. In the next phase of
our research, we plan to augment our infrastructure
with a optimizer and the CT code generation layer
with a general purpose code generator.

5 Preliminary Experimental Re-
sults

The current implementation of our system includes
only a simple code generator which does not im-
prove the performance of generated code beyond
that made possible by subroutine threading. For
this reason we report the raw performance of our
system only to illustrate that the overhead imposed
by our region selection system is relatively small.
Our system includes powerful profiling tools which
we used to study the relationship between region
shape and proportion of time spent executing re-
gions.

Despite the great deal of profiling, code genera-
tion, and rewriting that occurs during region de-
tection, on a Pentium 4 our system runs at about
the same speed as the unmodified direct thread-
ing virtual machine. Unmodified, direct threading
SableVM requires 843 elapsed seconds to run all
ten of our java benchmarks. Our linear region se-
lecting version requires 771 seconds. On the very
much smaller OCaml benchmarks the situation is
reversed. Unmodified OCaml requires 4.04 sec-
onds whereas we run for 4.57 seconds. We draw
two conclusions from these results. First, the over-

11

head of our techniques are significant but not prob-
lematic. Hence on the tiny OCaml microbench-
marks the overhead of profiling and detecting lin-
ear regions is not possible to recoup. On the much
larger Java benchmarks the overheads are less than
the speedup that even our very simple subroutine
threading code generator enables. Second, these
data suggest that with an optimizing code genera-
tor our approach may be capable of very interesting
performance.

One goal of this phase of our research is to form
an impression of how the various shapes of com-
pilation unit compare. Development organizations
invest in mixed-mode execution environments be-
cause they believe that a region of virtual program
will run much faster when translated to native code
than it can be interpreted. Clearly we would like
to interpret as little as possible while compiling as
little code as possible. In [6] the “90-10” rule is de-
scribed. The suggestion is that a mixed-mode sys-
tem should strive to find the 10% of the virtual code
that leads to executing generated code 90% of the
time. We believe this principle is sound, though the
precise levels are a bit dated – we test the “95-5”
rule and the “99-1” rule also.

We wish to investigate how the proportion of vir-
tual instructions executed from regions of varying
shapes relative to virtual instructions executed over-
all varies as more virtual code is translated into na-
tive code. Our metric of how much virtual code
has been compiled is the ratio of virtual instruc-
tions translated to the number of virtual instruc-
tions loaded in all active methods.

Each stacked bar in Figure 8 represents the charac-
teristics of a region shape on a single benchmark.
The stack shows how much code needs to be com-
piled in order to achieve a given ratio. The height
of the bottom stack represents the “90-10” rule. Its
height indicates how much code needs to be trans-
lated to cause 90% of the execution to come from
the region. For example, the height of the bottom
stack (in solid black) of the rightmost bar in the fig-
ure indicates that slightly more than 5% of the code
of javac needs to be compiled to attain 90% of the
execution from the traces. Note also that the ab-
sence of a white stack (evident on top of most other
stacks) indicates that traces never attained 99% ex-
ecution of javac.

One point that must be raised is that these results
do not informwhich 90% of javac should be con-
verted to traces. Figure 8 effectively assumes that
an oracle is available to choose the most frequently

executed traces. Naturally these were calculated af-
ter the fact, but in real life we face the additional
challenge of designing a heuristic to select code.
Hence, when a real heuristic is used to select traces
we should expect more code to be compiled.

On the X-axis we have sorted stacks in two ways.
The coarsest level of sorting is by shape. Each
cluster of stacks represents the results for a shape.
Within each cluster we have ordered benchmarks,
the standard SPEC98 suite [17], scimark [14], and
soot[21], a bytecode to bytecode optimizing com-
piler, such that those we expected to be strongly
looping (compress, db, etc) are on the left whereas
javac, etc, are on the right. This means that within
each cluster stacks tend to have an upward trend
towards the right as unpredictable benchmarks re-
quire more code to cover.

We will discuss the various shapes moving from
left to right across the figure. On the left, we have
pure linear block generation and cached linear block
generation (our runtime version of selective inlin-
ing). Comparing these two heuristics we see the
advantage offered by avoiding the regeneration of
identical blocks. For the strongly looping bench-
marks on the left of each cluster, execution is dom-
inated by the, mostly unique, blocks of the inner
loops. The interesting exception is mpegaudio,
which, due to obfuscation, has many unique and
relatively rarely executed instruction sequences.
However, the impact becomes much more notice-
able for the less predictable benchmarks. At 99%,
two thirds of the hottest blocks are shared, and are
eliminated by caching.

The next three clusters show execution density for
the larger execution regions. The central bar clus-
ter shows delayed whole method compilation, built
with an execution delay of 2000 method entries or
back-edge executions. The next cluster presents
Whaley’s partial method selection, using the sug-
gested initialization and detection delays of 2000
and 25000 of the above executions, respectively.
As methods are correctly built after the initial de-
lay, the time spent executing these methods is in-
cluded. On the right, we present the distribution
for SPECL traces built with a recording delay of
50 entry-point executions.

Comparing the shapes we see that, with the inter-
esting exception of the obfuscated mpegaudio, they
all fare well for strongly looping benchmarks. Only
tracing with its low initial threshold is able to cap-
ture the full 99% of the execution of mpegaudio.
This is due to the longer training period used for

12

c
o
m

p
re

s
s

d
b

m
p
e
g
a
u
d
io

s
c
im

a
rk

m
tr

t

ra
y
tr

a
c
e

je
s
s

s
o
o
t

ja
c
k

ja
v
a
c

bb

c
o
m

p
re

s
s

d
b

m
p
e
g
a
u
d
io

s
c
im

a
rk

m
tr

t

ra
y
tr

a
c
e

je
s
s

s
o
o
t

ja
c
k

ja
v
a
c

cached

c
o
m

p
re

s
s

d
b

m
p
e
g
a
u
d
io

s
c
im

a
rk

m
tr

t

ra
y
tr

a
c
e

je
s
s

s
o
o
t

ja
c
k

ja
v
a
c

method
c
o
m

p
re

s
s

d
b

m
p
e
g
a
u
d
io

s
c
im

a
rk

m
tr

t

ra
y
tr

a
c
e

je
s
s

s
o
o
t

ja
c
k

ja
v
a
c

partial

c
o
m

p
re

s
s

d
b

m
p
e
g
a
u
d
io

s
c
im

a
rk

m
tr

t

ra
y
tr

a
c
e

je
s
s

s
o
o
t

ja
c
k

ja
v
a
c

trace

javac/methods 48.9

0

5

10

15

20

25
%

 l
o

a
d

e
d

 c
o

d
e

Benchmark and Region Shape

0.99 0.95 0.9

Figure 8: SPECjvm Java benchmark results comparing variousshapes of region. Each cluster rep-
resents a shape of region to compile. Each stacked bar represents a specific benchmark. The height
of each stack represents the minimum proportion of all virtual instructions that must be compiled in
order for a given proportion of all virtual instructions exe cuted to be from the compiled code cache.

methods and partial methods combined with mpe-
gaudio’s multiplicity of methods. Another inter-
esting benchmark is soot, for which none of the
shapes is able to capture the full 99%. One rea-
son for this might be that we execute soot on a sin-
gle small class file, limiting amortization opportu-
nities. For the other benchmarks, the advantage of
partial methods over methods is clear, with signif-
icant decreases in the amount of code generated.
Examining traces we see that for many of the more
predictable benchmarks they outperform both meth-
ods and partial methods. However, for the least pre-
dictable benchmarks tracing never reaches the full
99% though examining the detailed data we found
traces do in total reach around 98%.

In summary, although modern JIT compilers re-
strict themselves to methods it appears that non-
static shapes may be able to compile significantly
less code while executing a similar proportion of
the time from their native code cache.

6 Conclusions
Mixed-mode execution is interesting because it pro-
vides a way of incrementally raising the perfor-
mance of virtual machines. High performance, Just
in Time (JIT) compilation techniques make use of
mixed-mode execution that is faster than either in-
terpretation or compilation alone. However, creat-
ing the infrastructure for a JIT requires a large up-
front investment in development effort. The chal-
lenge of method based JIT compilation is that by
using a language defined static unit of compilation
you must be able to handle all the features of that
language. Thus, before you can optimizeanything
you have to be able to compileeverything. Ideally,
the architecture for a mixed-mode VM could detect
and execute a variety of shapes of hot regions of a
virtual program.

Our vision of the lifecycle of an interpreted lan-
guage is that we would initially deploy a context
threaded interpreter. Then, when performance is-

13

sues arise, we would deploy a modest mixed-mode
system which would select a few small, specific re-
gions, and generate good native code for those. As
the need arose, we would incrementally increase
the size and generality of the regions we could com-
pile.

In this paper, we have described how our architec-
ture allows for a variety of mixed mode execution
shapes. We believe our system makes it relatively
simple to support a wide variety of compilation unit
shape because of a beneficial interaction of subrou-
tine threading, virtual PC and direct threading table
maintenance.

Subroutine threading allows us to intersperse the
dispatch of bytecode bodies with generated native
code. This means that we never have to gener-
ate code for functionality that is already provided
by bytecode bodies. Nor is it precluded, the cost
of the duplication of effort need not be paid un-
less the benefits of the performance gains justify it.
Subroutine threading naturally provides good inter-
position opportunities. All of the profiling tech-
niques we have described depend on interposing
calls to runtime routines around bytecode dispatch.
It seems to be particularly important thatpuresub-
routine dispatch is used, where virtual branch in-
structions are pure calls also, modifying the virtual
PC and returning to their caller. This makes it very
simple to interpose on the control flow edges of the
virtual program. Our experience so far indicates
that this simplifies region selection and generation.

Retaining the direct threading table and maintain-
ing thevPC at region boundaries enables our lazy
linking technique. The DTT was originally devised
to manage virtual control flow between bytecode
bodies in a direct threaded interpreter. In exactly
the same way, it allows us to manage virtual con-
trol flow between regions of code. We initially con-
nect regions with easy to generate lazy links and
rewrite them as hard links later when the destina-
tion is known. This allows us to avoid the com-
plexity of handling forward references and allows
us to generate lazy links to destinations that may or
may not have code generated for them in the future.

The performance data we report indicates that the
overhead of our region selection and code gener-
ation is modest. In fact, several significant Java
benchmarks run faster than the original direct
threaded implementations even though profiling is
on. A very interesting question is the extent to
which the constraints of virtual PC maintenance
and bytecode body reuse will impede the optimiza-

tion of regions. Hence, in the very near future we
will turn our attention on how to generate high per-
formance code.

7 Acknowledgements
The ideas presented in this paper have benefited
from discussions with Kevin Stoodley, Mark Stood-
ley, and Benjamin Vitale. The research project is
supported by grants from IBM CAS, CITO and
NSERC.

8 About the Authors
Mathew Zaleski is currently a PhD candidate in
the department of computer science at the Univer-
sity of Toronto. In the preceding 15 years Mathew
filled a number of technical, management and busi-
ness positions in the software industry including at
Immersant, Alias Research and IBM.

Marc Berndl is currently working for Google, on
leave from the PhD program in the Department of
Computer Science at the University of Toronto. He
received an MSc from McGill University in 2004.

Angela Demke Brownis an Assistant Professor in
the Department of Computer Science at the Uni-
versity of Toronto. She received her MSc from the
University of Toronto and her PhD from Carnegie
Mellon University. Her research interests include
run-time optimization and operating systems.

9 References
[1] M. Arnold, M. Hind, and B. G. Ryder. Online

feedback-directed optimization of Java. In
OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applica-
tions, pages 111–129, New York, NY, USA,
2002. ACM Press.

[2] M. Arnold and B. G. Ryder. A framework
for reducing the cost of instrumented code. In
PLDI ’01: Proceedings of the ACM SIGPLAN
2001 conference on Programming language
design and implementation, pages 168–179,
New York, NY, USA, 2001. ACM Press.

[3] V. Bala, E. Duesterwald, and S. Banerjia.
Dynamo: a transparent dynamic optimiza-
tion system. InPLDI ’00: Proceedings of
the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementa-
tion, pages 1–12, New York, NY, USA, 2000.
ACM Press.

14

[4] T. Ball and J. R. Larus. Efficient path profil-
ing. In MICRO 29: Proceedings of the 29th
annual ACM/IEEE international symposium
on Microarchitecture, pages 46–57, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[5] M. Berndl, B. Vitale, M. Zaleski, and
A. Demke Brown. Context threading: A flex-
ible and efficient dispatch technique for vir-
tual machine interpreters. InCGO ’05: Pro-
ceedings of the Third International Sympo-
sium on Code Generation and Optimization,
pages 15–26, Washington, DC, USA, 2005.
IEEE Computer Society.

[6] D. Bruening and E. Duesterwald. Exploring
optimal compilation unit shapes for an em-
bedded just-in-time compiler. InFDDO-3:
Proceedings of the Third ACM Workshop on
Feedback-Directed and Dynamic Optimiza-
tion, 2000.

[7] C. Curley. Life in the FastForth lane.Forth
Dimensions, 14(4), January-February 1993.

[8] C. Curley. Optimizing in a BSR/JSR threaded
Forth.Forth Dimensions, 14(5), March-April
1993.

[9] M. A. Ertl. Implementation of Stack-Based
Languages on Register Machines. PhD the-
sis, Technical University of Vienna, Austria,
1996.

[10] M. A. Ertl and D. Gregg. The behavior of ef-
ficient virtual machine interpreters on mod-
ern architectures. InEuro-Par ’01: Proceed-
ings of the 7th International Euro-Par Con-
ference Manchester on Parallel Processing,
pages 403–412, London, UK, 2001. Springer-
Verlag.

[11] M. A. Ertl and D. Gregg. Optimizing indirect
branch prediction accuracy in virtual machine
interpreters. InPLDI ’03: Proceedings of
the ACM SIGPLAN 2003 conference on Pro-
gramming language design and implementa-
tion, pages 278–288, New York, NY, USA,
2003. ACM Press.

[12] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan.
VMgen — a generator of efficient virtual ma-
chine interpreters.Software: Practice and Ex-
perience, 32:265–294, March 2002.

[13] I. Piumarta and F. Riccardi. Optimizing di-
rect threaded code by selective inlining. In
PLDI ’98: Proceedings of the ACM SIGPLAN
1998 conference on Programming language

design and implementation, pages 291–300,
New York, NY, USA, 1998. ACM Press.

[14] R. Pozo and B. Miller.SciMark: a numer-
ical benchmark for Java and C/C++, 1998.
http://www.math.nist.gov/SciMark.

[15] T. A. Proebsting. Optimizing an ANSI C in-
terpreter with superoperators. InProceedings
of the 22nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming lan-
guages, pages 322–332, New York, NY, USA,
1995. ACM Press.

[16] E. D. Rather, D. R. Colburn, and C. H. Moore.
The evolution of Forth.ACM SIGPLAN No-
tices, 28(3), March 1993.

[17] SPEC JVM98 benchmarks, 1998.
http://www.spec.org/osg/jvm98/.

[18] Squeak project information.
http://www.sourceforge.net/projects/squeak.

[19] G. T. Sullivan, D. L. Bruening, I. Baron,
T. Garnett, and S. Amarasinghe. Dynamic
native optimization of interpreters. InIVME
’03: Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators,
pages 50–57, New York, NY, USA, 2003.
ACM Press.

[20] O. Traub, S. Schecter, and M. D. Smith.
Ephemeral instrumentation for lightweight
program profiling. Technical report, Harvard,
June 2000.

[21] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren,
P. Lam, and V. Sundaresan. Soot - a Java byte-
code optimization framework. InCASCON
’99: Proceedings of the 1999 conference of
the Centre for Advanced Studies on Collabo-
rative research, page 13. IBM Press, 1999.

[22] B. Vitale and T. S. Abdelrahman. Catena-
tion and specialization for tcl virtual machine
performance. InIVME ’04: Proceedings of
the 2004 workshop on Interpreters, virtual
machines and emulators, pages 42–50, New
York, NY, USA, 2004. ACM Press.

[23] J. Whaley. Partial method compilation us-
ing dynamic profile information. InOOPSLA
’01: Proceedings of the 16th ACM SIGPLAN
conference on Object oriented programming,
systems, languages, and applications, pages
166–179, New York, NY, USA, 2001. ACM
Press.

15

