
PATH: Page Access Tracking to Improve Memory Management

Reza Azimi, Livio Soares,
Michael Stumm

Department of Electrical and Computer
Engineering

University of Toronto{azimi,livio,stumm}�ee
g.toronto.edu
Thomas Walsh, Angela Demke Brown

Department of Computer Science
University of Toronto{tom,demke}�
s.toronto.edu

Abstract
Traditionally, operating systems use a coarse approximation
of memory accesses to implement memory management al-
gorithms by monitoring page faults or scanning page ta-
ble entries. With finer-grained memory access information,
however, the operating system can manage memory much
more effectively. Previous work has proposed the use of a
software mechanism based on virtual page protection and
soft faults to track page accesses at finer granularity. In this
paper, we show that while this approach is effective for some
applications, for many others it results in an unacceptably
high overhead.

We propose simple Page Access Tracking Hardware
(PATH) to provide accurate page access information to
the operating system. The suggested hardware support is
generic and can be used by various memory management
algorithms. In this paper, we show how the information gen-
erated by PATH can be used to implement (i) adaptive page
replacement policies, (ii) smart process memory allocation
to improve performance or to provide isolation and better
process prioritization, and (iii) effectively prefetch virtual
memory pages when applications have non-trivial memory
access patterns. Our simulation results show that these algo-
rithms can dramatically improve performance (up to 500%)
with PATH-provided information, especially when the sys-
tem is under memory pressure. We show that the software
overhead of processing PATH information is less than 6%
across the applications we examined (less than 3% in all but
two applications), which is at least an order of magnitude
less than the overhead of existing software approaches.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’07, October 21–22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-893-0/07/0010. . . $5.00

Categories and Subject Descriptors C.4 [Computer Sys-
tem Organization]: Performance of Systems—Design stud-
ies; D.4.2 [Operating Systems]: Storage Management—
main memory, virtual memory

General Terms Algorithms, Management, Measurement,
Performance, Design, Experimentation

Keywords page access tracking, translation lookaside buffer,
page replacement policy, process memory allocation, prefetch-
ing

1. Introduction
Computer system physical memory sizes have increased
consistently over the years, yet counter to popular concep-
tion, optimizing the allocation and management of memory
continues to be important. Numerous scientific and engi-
neering applications exist that can exhaust even large phys-
ical memory [1, 8, 31]. Moreover, while physical memory
is generally considered to be inexpensive, it continues to be
one of the dominant factors in the cost of today’s medium
to large scale computer systems, and also a major factor in
energy consumption.

To use memory effectively, accurate information about
the memory access pattern of applications is needed. Tra-
ditionally, operating systems track application memory ac-
cesses at a relatively coarse granularity, either by monitoring
page faults or by periodically scanning page table entries for
specific bits set by hardware. While these approaches pro-
vide a coarse approximation of therecencyof page accesses,
important information about thesequenceof accesses, which
is required by most sophisticated memory management al-
gorithms, is absent.

In systems with software-managed TLBs, page accesses
can be recorded and processed on each TLB miss. While
this approach can provide significantly more fine-grained
information on page accesses, it adds prohibitively large
overhead to a software TLB miss handler, which is already
a performance-critical component.

A software-only alternative in which virtual pages are di-
vided into anactive setand aninactive sethas been sug-

31

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 450 500 550 600 650 700 750 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

(b
il

li
o

n
 c

y
c

le
s

)

Memory Size (MB)

Global LRU
LIRS

 70

 80

 90

 100

 110

 120

 130

32K16K8K4K2K512128
 0

 50

 100

 150

 200

 P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

S
o

ft
w

a
re

 O
v

e
rh

e
a

d
 (

%
)

Active Set Size (# of Pages)

Exec. Time
Overhead

(a) Performance of LIRS vs. LRU (b) The effect of active set size

Figure 1. Graph (a) shows how LIRS manages to outperform LRU for different memory sizes forFFT. Graph (b) shows, for a
fixed memory size (703Mbytes), how LIRS’ performance changes as the active set size increases, while the runtime overhead
of maintaining the active set deceases (the projected execution time does not include the runtime overhead).

gested by recent research [30, 33]. Pages in the inactive set
are protected by appropriately setting page-table bits, sothat
every access to them will generate an exception so that the
operating system can record the access. Pages in the active
set are not protected, and as a result, accesses to these are
efficient and not directly tracked. Pages are moved from the
inactive set to the active set on access, and a simple replace-
ment algorithm such as CLOCK [5] is used to move stale
pages out of the active set. The active set, although much
smaller than the inactive set, is meant to absorb the majority
of page accesses, thus greatly reducing the software over-
head compared to raising an exception on every access.

Although this software approach is shown to be effec-
tive with certain types of applications, its overhead for many
memory-intensive applications is unacceptably high. Adap-
tive resizing of the active set can be used to control the over-
head [30]. However, the larger the active set, the more ac-
cesses it absorbs and, hence, the lessaccuratethe sequence
of recorded page accesses will be, making the memory man-
agement algorithms less effective. An example of such a
case is shown in Figure 1. On the left, the performance of
LIRS [13], a well-known memory management algorithm, is
compared against LRU assuming no overhead for collecting
page access information. The graph on the right shows how
the performance of LIRS degrades as the active set size in-
creases, while the overhead of recording page accesses nat-
urally decreases. To achieve LIRS’ potential in improving
performance, a high runtime overhead must be paid, other-
wise, much of the advantage of LIRS over LRU disappears.

To cope with this potentially large overhead, custom
hardware is suggested by Zhou et al. [33]. While their
approach effectively tracks physical memoryMiss Ratio
Curves, it does not provide raw page access information to
the operating system, and thus cannot be used for memory
management algorithms other than the one for which it is
intended. Moreover, the hardware required by this approach
is substantial and grows with the size of physical memory.

In this paper, we propose Page Access Tracking Hard-
ware (PATH) to be added to the processor micro-architecture
to monitor application memory access patterns at fine gran-
ularity and with low overhead. Similar to the software ap-
proach, PATH is designed based on two observations. First,
a relatively small set ofhot pages are responsible for a large
fraction of the total page accesses. Second, the exact orderof
page accesses within the hot set is unimportant since these
pages should always be in memory. By ignoring accesses to
hot pages, we can vastly reduce the number of accesses that
must be tracked, while focusing on the set of pages that are
interesting candidates for memory management optimiza-
tions.

The key innovation with PATH lies in the tradeoff be-
tween functionality assigned to hardware and functionality
assigned to software. The hardware we propose is (i) small
and simple, (ii) scalable, in that it is independent of system
memory size, and (iii) low overhead, imposing no delays on
the common execution path of the micro-architecture. We
delegate to software (specifically, an exception handler) the
online maintenance of data structures to be used by the mem-
ory manager when making policy decisions.

Section 2 presents our hardware design for PATH and
Section 3 shows how key low-level data structures can be
constructed by software. We show in Section 4 that the
operating system can use PATH-generated information to
enhance memory management by (i) implementing more
adaptive page replacement policies, (ii) allocating memory
to processes or virtual machines so as to provide better
isolation and to enforce process priorities more precisely,
and (iii) prefetching pages from virtual memory swap space
or memory-mapped files when applications have non-trivial
memory access patterns. Section 5 describes our experi-
mental methodology. Our simulation results, presented in
Section 6, show that substantial performance improvements
(up to 500% in some cases) can be achieved, especially
when the system is under memory pressure. While the al-
gorithms based on PATH have different time and space over-

32

Figure 2. Page Access Tracking Hardware (PATH) Archi-
tecture.

head tradeoffs, the basic overhead of providing fine-grained
page-access information to the operating system is less than
6% across all the applications we examined (less than 3% in
all but two applications) – at least an order of magnitude less
than that of existing software approaches.

2. Design of PATH Architecture
Memory management algorithms are often first described
theoretically under the assumption that a complete page ac-
cess sequence is available. Later, they are implemented using
a coarse approximation of this sequence, collected by system
software. For example, the well-known least-recently-used
(LRU) page replacement algorithm requires the complete
access sequence to implement exactly, but is commonly ap-
proximated by the CLOCK algorithm which coarsely groups
pages into recently-used, somewhat recently used, and not
recently used categories. Optimizations to the basic LRU
algorithm, and other sophisticated memory management
strategies, require more detailed page access information
than systems currently provide. Trackingall accesses, how-
ever, is prohibitively expensive and generates too much in-
formation for online processing. The key question, then, is
how to reduce the volume of information to a manageable
level, while retaining sufficient detail on the order of page
accesses.

Current memory management hardware already contains
an effective filter to catch accesses to the hottestN pages,
namely the Translation Lookaside Buffer (TLB). Thus, one
way to track page accesses is to augment existing hardware
or software TLB miss handlers to record a trace of all TLB
misses. Aside from the overhead that this would add to the
critical path of address translation, the primary problem with
this strategy is that first-level TLBs are too small (with up to
128 entries) to capture the set of hot pages, leading to traces
that are still too large for online use. Simply increasing the
size of the first-level TLB is not a viable option, since the
size is limited by fast access requirements.

Thus, we propose the addition of a new hardware struc-
ture that essentially functions as a significantly larger TLB
for the purpose of filtering out accesses to hot pages, while
recording a trace of accesses to all other pages. We call this
structurePage Access Tracking Hardware (PATH). Figure 2
depicts the three major components of PATH. ThePage Ac-
cess Buffer(PAB) and theAssociative Filterwork together
to remove accesses to hot pages from the trace; all other ac-
cesses are recorded in thePage Access Log(PAL) which
raises an exception to allow for software processing when
it becomes full.

The Page Access Buffer (PAB) contains the set of re-
cently accessed virtual pages, augmented with an address
space identifier to distinguish between pages from different
processes. The PAB is structurally similar to a TLB except
that (i) it is updated only on a TLB miss, (ii) it need not con-
tain the physical addresses of the pages it holds, and (iii) it
is significantly larger than a typical TLB. As the PAB size
increases, more pages are consideredhotand more accesses
are filtered out of the trace, thus reducing both processing
overhead and accuracy. In Section 6.4, we examine in detail
the tradeoff between overhead and usefulness of the traces
with varying PAB sizes. Our experiments show that a PAB
with 2048 entries is a good point in this tradeoff. Moreover,
with a 2K-entry PAB, PATH will have a very small chip
footprint. Finally, some existing architectures such as IBM
POWER and AMD Opteron already have a fairly large (e.g.
512 to 1024 entry) second-level TLB (In IBM POWER pro-
cessors, the first level address translation cache is usually
128 entries and is called the Effective-to-Real Address Table
or ERAT). One can envision integrating PATH with a slightly
larger version of such a second-level TLB. We show in Sec-
tion 6.5 that using the same 2K size for the active set in the
software approach will result in unacceptably high overhead.

A page access is considered for recording only if it misses
in the PAB. However, because of the limited associativity of
the PAB, it can be susceptible to repeated conflict misses
from the same small set of (hot) pages. To deal with this
problem, PATH includes an Associative Filter that functions
somewhat like a victim cache. The associative filter is a
small (e.g., 64 entries), fully-associative table with an LRU
replacement policy that is updated on every PAB miss. Its
purpose is to prevent the recording of accesses to hot pages
caused by short term conflict misses in the PAB.

Misses in the associative filter are recorded in the Page
Access Log (PAL) which is a small (e.g., 128 entries) buffer.
When the log becomes full, an exception is raised, causing
an operating system exception handler to read the contents
of the PAL and mark it empty by resetting the PAL pointer.

Given this architecture, PATH provides a fine-grained ap-
proximation of the sequence of pages that are accessed. Hot
pages will always reside in the PAB, while sequential or
looping access patterns over an area larger than that cov-
ered by the PAB (e.g., 8MB) are very likely to be completely

33

recorded by PATH in their proper order. For “less hot” pages,
the reuse distance can also be accurately captured by PATH
due to the subsequent PAB misses it causes. In the following
section, we show how system software can use the informa-
tion recorded in PAL to construct a variety of data structures
useful for memory management.

Finally, PATH must also include an interface for the op-
erating system to control it and to perform lookup opera-
tions on it. The operating system can also dynamically turn
off PATH when the system is not under memory pressure,
thereby reducing both the processing overhead and power
consumption.

3. Low-level Software Structures
The benefits of having LRU stacks and/or Miss Rate Curves
(MRC) available are well recognized [33]. In this section we
argue that these data structures can be constructed efficiently
in software from the information obtained by PATH. Specif-
ically, we show how both LRU stacks and Miss Rate Curves
can be maintained on-line by the PAL overflow exception
handler. Both structures can, in turn, be used by memory
management software to make informed decisions. By del-
egating the maintenance of these structures to software, our
design provides greater flexibility and customizability than
previous proposed hardware support.

3.1 LRU Stack

The LRU stack maintains a recency order among the pages
within an address range. The top of the stack is the most
recently accessed page, while the bottom of the stack is
the least recently accessed page. In our scheme, each page
accessed (as recorded by the PAL) is moved from its current
location in the stack to the top of the stack. The LRU stack
is updated for every entry recorded in the PAL.

To enable fast page lookup and efficient update in the
LRU stack, we suggest using a structure similar to those
used to maintain page tables. Each element in this structure
represents a virtual page and contains two references: one to
the previous page in the LRU stack and one to the next page
in the LRU stack. Conceptually, the LRU stack is a doubly-
linked list, and elements are repositioned within the stackby
adjusting references to neighboring elements. Thus, a virtual
page can be looked up with a few (usually 2 or 3) linear
indexing operations, and moving a page to the top of the
LRU stack involves updating at most 6 reference fields in the
stack: 2 references associated with the page being moved, 2
of its previous neighbors, 1 at the previous head of the list,
and the head of the list itself.

The LRU stack has an element for each page that was ever
accessed (not just the pages currently in memory). Assuming
4 KB virtual pages, 32-bit page references can be used for
address ranges up to 16 TB, resulting in a space overhead
of 8 bytes per virtual page used. The working set size of the
LRU stack is roughly proportional to the working set size of

Stack
 Top

Stack
 Bottom

Group Boundary

LRU Group Headers

Group Rank

99 99 99 99 98 98 98 98 1 1 1 1 0 0 0 0

Figure 3. The LRU stack with group headers.

the address range. Hence, a working set size of several GB
implies that several MB will be consumed by the LRU stack.

3.2 Miss Rate Curve (MRC)

An MRC depicts the page miss rate for different memory
sizes, given a page replacement strategy. More formally,
MRC is a functionλr,p(M), defined for address ranger and
page replacement policyp, identifying the number of page
misses the process will incur onr over a certain time period
if M physical pages are available. Often, the slope ofλ at a
given memory size is of more interest than its actual value. If
the slope is flat then making additional pages available will
not significantly reduce the miss rate, but if the slope is steep
then even a few additional pages can significantly reduce the
page miss rate.

Our method of maintainingλ on-line is based on Matt-
son’s stack algorithm [19] and Kimet al.’s algorithm [17].
We augment the elements of the LRU stack described in Sec-
tion 3.1 with arank field used to record the distance of the
element from the top of the stack (i.e., the reuse distance).
Eachλ is maintained as a histogram. Conceptually, when-
ever a page is accessed, the histogram values corresponding
to memory sizes smaller than the rank of the accessed page
are incremented by one. In addition, the page is moved to the
top of the stack, while setting its rank field to zero and decre-
menting the rank field of every element between the original
position of the page and the previous top of stack by one.

Time is divided into a series ofepochs(e.g., a few sec-
onds). At the end of each epoch, the value ofλ is saved and
reset. Each process may store a history of values ofλ for
several epochs to be able to make more accurate decisions
about the memory consumption of that process.

To reduce overhead, page groups of sizeg can be defined
and the rank field can be redefined to record the distance to
the top of the stack in terms of the number of page groups.
By keeping an array of references to the head of each page
group, the cost of updating the rank fields can be reduced by
a factor ofg. Figure 3 shows how the group header array is
used to find the group boundaries, since only the elements
at these boundaries need to be updated. Algorithm 1 shows
the basic steps that must be taken for every page recorded in
the PAL to maintainλ histograms for the LRU replacement
policy. Note that the group sizeg is defined by software and
can change according to the desired level of precision forλ.

34

Algorithm 1. UpdateλLRU and the LRU stack on each
recorded pageVaddr.

1: lruRank ⇐ Stack[V addr].rank

2: moveV addr element to the top of the LRU stack
3: Stack[V addr].rank = 0

{ update group headers and page ranks for groups lower
thanlruRank}

4: for i = 0 to lruRank do
5: GroupHeaders[i] ⇐ Stack[GroupHeaders[i]].prev

6: Stack[GroupHeaders[i]].rank + +
7: end for

{ update MRC for LRU}
8: for j = 0 to lruRank do
9: λLRU [j] + +

10: end for

11112222

Stack
 Top

Stack
 Bottom

LRU Group Headers

Current Physical Memory
Size

0 0

Figure 4. The optimized structure for LRU group headers.

A further optimization is possible based on the observa-
tion that at any instance in time, we are only interested inλ

at the point corresponding to the amount of physical mem-
ory allocated to the virtual address range under study and the
slope ofλ around that point. Hence, the LRU stack can be
divided into 4 groups as shown in Figure 4: the topM − g

pages, whereM is the current physical memory allocated to
the address range, two groups ofg pages on both sides ofM ,
and all the remaining pages at the bottom of the LRU stack.
With this optimization, only four entries need to be updated
on each page access to maintainλ.

4. Example Use Cases
In this section we describe several ways that the information
provided by PATH, and the LRU stacks and MRC curves that
are constructed by software, can be used to implement so-
phisticated memory management strategies, including adap-
tive page replacement, improved process memory allocation,
and virtual memory prefetching. In Section 6 we evaluate
their effectiveness.

4.1 Adaptive Replacement Policies

There is a large body of research on page replacement poli-
cies [2, 7, 9, 10, 12, 13, 14, 16, 20, 23, 26, 32]. Many of the
algorithms proposed are approximations of LRU with exten-
sions to deal with sequential and looping patterns for which
LRU performs poorly. The effectiveness of most of these al-

gorithms has only been shown in the context of file system
caching, where precise information on the timing and order
of accesses is available.

Using information from PATH, we have implemented two
adaptive page replacement algorithms. The first one,Region-
Specific Replacement, attempts to automatically apply the
appropriate replacement policy on a per-region basis for dif-
ferent memory regions defined in the application’s virtual
address space. The second one is the recently proposed adap-
tive policy calledLow Inter–Reference Set (LIRS)[13]. We
chose to implement LIRS because it is fairly simple and, for
file system caching, has proven to be competitive with the
best algorithms.

We should note that the algorithms or models that can
exploit information provided by PATH are not limited to the
examples presented in this section. For instance Vilayannur
et al. [28] present a model to proactively predict when a
page is not actively used and hence is ready to be replaced.
The model is based on accurately measuring the distance
between consecutive accesses to a page, which can easily
be provided by PATH.

4.1.1 Region-Specific Replacement

The rationale behind region-specific page replacement is the
desire to be able to react individually to the specific ac-
cess patterns of each large data structure within a single ap-
plication. Studies in the context of file system caching [7]
have shown that by analyzing the accesses to individual files
separately, one can model the access pattern of the appli-
cations more accurately. We argue that memory-consuming
data structures (e.g., multidimensional arrays, hash-tables,
graphs) usually have stable access patterns, and by detecting
these patterns, one can optimize the caching scheme for each
of these data structures individually.

Most large data structures either reside in contiguous re-
gions in the virtual address space (e.g., arrays), or could rea-
sonably be made to do so. For example, one can use custom
allocators that allocate correlated data from a pre-allocated
pool of virtual memory. Lattner and Adve [18] show how to
cluster individually allocated, but correlated, memory items
automatically. As a result, large data structures (e.g., a graph
of millions of nodes) have a high probability of being located
in a large contiguous region of address space. The contigu-
ity of data structure memory is not an essential factor, but
it simplifies the implementation of region-specific replace-
ment. For our simulation study, we have assigned a separate
region for each large static data structure as well as any largemmapped areas.

We choose the replacement policy by separately, but si-
multaneously, computingλ for each region for both LRU
and MRU policies; and picking the policy that would result
in a lower miss rate. To computeλMRU we use the same
scheme shown in Figure 4 and Algorithm 1, but with pages
ranked in reverse order. Hence, for each page, we maintain
two ranks, one for LRU and the other for MRU. Given that

35

the rank value is at most 4, the rank can be represented by
two bits, so the space overhead is negligible.

We switch to a new policy only if it is consistently better
than the current policy. The default policy is LRU. If a region
is being accessed in a looping pattern, it will have lower
values forλMRU , but if the region is being accessed in
temporal clusters,λLRU will have lower value.

With region-specific page replacement, it is necessary to
decide how many physical pages to allocate to each region.
At the end of each epoch, we use the computedλ values
for the epoch to calculate how much memory each region
actually needs. We definebenefit andpenalty functions for
each region as follows:

benefitr(g) = λr,p(M − g) − λr,p(M)
penaltyr(g) = λr,p(M) − λr,p(M + g)

and balance memory among regions within a process address
space by taking pages away from regions with low penalty
and awarding them to the regions with higher benefit. The
number of regions in an application is typically small (e.g.,
usually less than 10). Thus, balancing memory within a
single application at the end of each epoch is not a costly
operation.

4.2 Process Memory Allocation

In most general-purpose operating systems today, memory
is allocated to a process on-demand, in response to a page
fault, from a global pool of pages. All pages are equal can-
didates for replacement, irrespective of the process to which
they belong. The actual amount of memory allocated to each
process is a direct function of its page fault rate and the page
replacement policy in use. Processes that access more pages
than others over a period of time will be allocated a larger
number of pages, since they fault on more pages and keep
their own pages recent. Global page replacement has two
major advantages. First, it is simple and easy to implement
with little overhead. Second, for workloads in which applica-
tions have similar access patterns, global page replacement
naturally tends to minimize the total number of page-faults.
Despite its wide adoption, global page replacement has two
significant shortcomings:

Sub–optimal System Throughput: Global page re-
placement assumes each application receives the same ben-
efit when given an extra page. In reality, however, one ap-
plication’s throughput may rise sharply as it is given more
pages, whereas others may see no performance gains. If the
goal is to maximize overall system throughput, pages should
be taken away from processes that derive little benefit from
them and given to processes that benefit the most.

Lack of Isolation and Unfair Prioritization: Global
page replacement does not guarantee any level of service
for applications. So-called “memory hogs” can starve ap-
plications with even a small working set size [4]. Similarly,
in a system under memory pressure, process prioritization
done only through CPU scheduling can become ineffective.

Proximity
Set

P5
P4

P7

P3

P2

P1

P63

8

1 4

4
11

Figure 5. Page Proximity Graph. The shaded area shows the
prefetch set for page P1 when traversing to a depth of 2.

Chapin identified the prioritization problem due to lack of
memory isolation in operating systems, and motivated the
concept ofmemory prioritization[6].

Our approach to optimizing throughput is similar to the
greedy algorithm used by Zhouet al. [33] with a different
level of hardware integration. In this approach, each process
is initially allocated an equal amount of physical memory.
At each memory allocation step,λ is calculated for all pro-
cesses, andpenaltyP andbenefitP for processP are calcu-
lated as follows:

benefitP (g) = λp(M) − λp(M + g)
penaltyP (g) = λp(M − g) − λp(M)

The greedy algorithm takesg pages away from the process
with the least value forpenaltyP (g), and assigns them to the
process with the highest value forbenefitP (g).

To address unfair prioritization, different policies can be
implemented usingλ. For example, physical memory may
be partitioned to balance the miss rates of concurrently run-
ning applications. We are continuing to explore different
schemes for fairness and process isolation using fine-grained
memory access information provided by PATH.

4.3 Virtual Memory Prefetching

Increases in I/O bandwidth over the years now allow for
aggressive and speculative prefetching of memory pages.
An aggressive prefetching scheme, however, risks replacing
pages that are more valuable (to the same or other applica-
tions) than those prefetched.

A simple operating system-level prefetching approach is
based onspatial locality: pages adjacent to the faulted page
in the virtual address space are candidates for prefetchingon
the assumption that they will be accessed soon. More pre-
cisely, whenever a page-fault happens, the nextw pages in
the address space are prefetched from the swap space, where
w could be either fixed or dynamically adjusted based on
how accurately the prefetching policy has been performing.
This scheme is effective in many cases, since large, memory-
consuming applications often access pages in contiguous
chunks that are much larger than a virtual page. However,
there are important classes of applications that have stable
access patterns, but with little or no spatial locality.

36

As an alternative, we have implemented a prediction
model similar to a Markov predictor [15] that incorporates
the temporal proximity of accesses to pages as the key fac-
tor. We use the LRU stack to find temporal proximity among
pages, similar to recency-based prediction models, such as
the one proposed by Saulsbury et al. [25]. Note that the LRU
stack must be precise to provide accurate information on the
proximity of page accesses. As we showed in Section 3.1,
the LRU stack is accurately maintained by using the PATH-
generated information.

Our model uses a weighted graph, called thePage Prox-
imity Graph(PPG), which identifies how often two virtual
pages are accessed shortly after each other. For each pagep,
we maintain aProximity Set, Xp, where|Xp| is at mostD
pages. Figure 5 shows a simple example of a PPG whereD

is equal to 8.
The PPG is updated on each page fault as follows. A

window of Wscan pages in the LRU stack is considered,
starting from the current location of the faulted page,p,
towards the top of the stack. If any page,q, in the scan
window is already inXp, the weight on(p, q) is incremented
by one. Otherwise,q is considered as a candidate to be
added toXp. The weight to all other nodes inXp that do
not appear in the scan window is decremented to decay
obsolete proximity information. If the weight on any edge
(p, s) reaches zero,s is removed fromXp.

Prefetching is initiated whenever a page fault occurs on a
page, such asp. To generate the set of pages to prefetch, the
PPG is traversed, starting fromp, in a breadth-first fashion,
and all pages encountered are added to the prefetch set. If
a page in the prefetch set is already resident in memory, it
will be artificially touched to prevent the page replacement
algorithm from evicting it, under the assumption that it will
likely be accessed soon. In Figure 5, the gray region shows
the prefetch set when starting fromP1 and traversing to a
depth of 2. The deeper the breadth-first traversal, the more
speculative prefetching will be. One can dynamically adjust
the depth of the traversal according to the current prefetching
effectiveness and available I/O bandwidth.

5. Experimental Framework
We used Bochs [3], a widely used full-system functional
simulator for the IA-32 architecture, to run the applica-
tions and record their memory accesses. This memory trace
was then fed to a simulator that simulates the memory-
management algorithms in a multi-programmed environ-
ment to obtain the page fault rate. To estimate execution
time, we first timed the execution of all workloads on an
AMD Athlon 1.5GHz system with enough memory to en-
sure that no page faults occurred. Then, we calculated apro-
jected execution timegiven the page fault rate determined by
simulation.

The projected execution time is calculated as follows:
Projected_Exec_Time = Exec_Time0 + WaitPF

WaitPF = Average_LatencyPage_Fault ∗ Total_Page_Faults

whereExec_Time0 is the execution time measured when no
page fault occurs. We assume that once a process faults on
a page, it will be blocked forAverage_LatencyPage_F ault cy-
cles; we use a fixed value of one million CPU cycles for
Average_LatencyPage_F ault. This value conservatively under-
estimates the cost of page faults as the average disk access
latency of even fast disks is on the order of a few millisec-
onds.

5.1 Applications

We evaluated the effectiveness of PATH on a set of memory-
consuming applications that we chose from various bench-
mark suites: six applications from Splash-2 [29], four from
the NAS Parallel Benchmark (NPB) suite [22], SPECJBB
2000 [27], MMCubing from the Illimine data mining suite [11],
and MrBayes, a Bayesian inference engine for phylogeny [21].
We did not include SPEC CPU benchmarks, since they have
fairly small memory footprints.

We ran the applications with large problem sizes within
the practical limits of the simulation environment (e.g., on
the order of a few hundred megabytes). However, all of these
applications will consume up to tens of gigabytes of mem-
ory for large but still realistic problem sizes. For our experi-
ments, we collected memory traces that cover the execution
of a few hundred billion instructions for each application.A
warm uptime is considered at the beginning of the simula-
tion in which no measurement is done.

6. Experimental Results
6.1 Adaptive Replacement Policies

Figure 6 shows the effect of using different replacement
policies on execution time as memory size is varied. Due to
space limitations, we show the results only for a set of four
applications with representative behavior.

For the great majority of applications, using one of the
adaptive policies resulted in a significant improvement in the
projected execution time (e.g., around 500% forLU
ont.).
Comparing region-specific and LIRS policies, in some cases
one performs slightly better than the other and vice versa, but
generally their difference is not significant. There are also
rare cases in which one of the adaptive policies performs
slightly worse than the basic LRU algorithm (e.g.,O
ean
for LIRS andSPECJbb for region-specific). Note that most
of the benefit of both LIRS and region-specific policies are
the result of having accurate page access information from
PATH.

6.2 Process Memory Allocation

To demonstrate the benefits of fine-grained memory access
pattern information for local (per-process) page replacement
schemes, we show that total system throughput (in terms of
Instructions Per Cycle) can be improved over a traditional
global replacement strategy. In this experiment, we simulate
two applications running simultaneously:SPECJbb andBT.

37

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 300 350 400 450 500 550 600 650 700 750 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 450 500 550 600 650 700 750 800 850 900

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

(a) LU cont. (FMM, MG, and SP) (b) Ocean cont. (Ocean non-cont.)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 550 600 650 700 750 800 850 900 950 1000 1050

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

(c) BT (FFT and MrBayes) (d) SPECJbb (LU non-cont. and CG)

Figure 6. Projected execution time of selected applications with different replacement policies. The applications in parenthesis
are those with similar behavior.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

IP
C

Cycles (billion)

Multi-Process Global LRU

SpecJBB
BT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

IP
C

Cycles (billion)

Local Allocation (Performance)

SpecJBB
BT

(a) Global LRU (IPC) (b) Local (Maximizing Throughput) (IPC)

Figure 7. Comparing the traditional global replacement versus a local replacement strategy that aims to maximize system
throughput in multi-programmed scenario: SpecJBB and BT.

Without loss of generality, to make the experiment more
clear, we assumed that the IPC of both applications is 1 when
running in isolation. As noted in Section 5, each page fault
is assumed to have a fixed latency of one million cycles. We
used a warm-up time of 30 billion instructions and a running
time of 60 billion instructions combined.

Figure 7 (a) shows the average IPC for both applica-
tions when run with global LRU replacement; Figure 7 (b)
shows the average IPC when the applications run with lo-
cal LRU replacement and memory allocation set to maxi-
mize throughput. The trend in IPC is similar for both setups;
however, our local allocation policy achieves higher over-
all IPC, needing roughly 18% fewer cycles to execute the
same number of instructions (145 billion cycles vs. 178 bil-
lion cycles for the global strategy). This is mainly because

SPECJbb derives a higher benefit from extra pages thanBT,
while a global scheme considers the utility of each page to
be the same for both applications.

6.3 Virtual Memory Prefetching

For a selected set of applications, we show the effects of
prefetching on projected execution time and on required
I/O bandwidth for both page-in and page-out operations in
Figures 8 and 9, respectively. The rest of the applications
we examined perform similarly to the ones of shown here,
and are, again, classified based on similarity and listed in
parenthesis in the figures.

For the spatial locality-based policy, we set the initial
prefetching window,w, to 64, which can dynamically grow
depending on achieved precision. For the temporal locality-

38

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 300 350 400 450 500 550 600 650 700 750 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 1000

 2000

 3000

 4000

 5000

 6000

 150 200 250 300 350 400 450 500

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 550 600 650 700 750 800 850 900

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

(a) LU Non-cont. (MMCubing, (b) MG (SP, LU cont., (c) SPECJbb(FMM)
and MrBayes) BT, FFT, and Ocean)

Figure 8. The effect of prefetching on the projected execution time. In parenthesis are applications which present similar
behavior.

 0

 50

 100

 150

 200

 250

 300 350 400 450 500 550 600 650 700 750 800

I/
O

 (
M

B
 i

n
 a

 b
il

li
o

n
 i

n
s

tr
s

)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 250 300 350 400 450 500

I/
O

 (
M

B
 i

n
 a

 b
il

li
o

n
 i

n
s

tr
s

)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

 0

 50

 100

 150

 200

 250

 300

 550 600 650 700 750 800 850 900

I/
O

 (
M

B
 i

n
 a

 b
il

li
o

n
 i

n
s

tr
s

)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

(a) LU Non-cont. (MMCubing, (b) MG (SP, LU cont., (c) SPECJbb(FMM)
and MrBayes) BT, FFT, and Ocean)

Figure 9. The effect of prefetching on the required I/O bandwidth. In parenthesis are applications which present similar
behavior.

based policy, we set the size of the proximity set for each
page to 10 and the scan window sizeWscan to 64 pages.
The depth of the breadth–first traversal in the PPG graph
was limited to 3. Finally, for both algorithms we set the size
of the pool of the pages that are prefetched, but not accessed
yet, to be at most 10% of physical memory.

For many applications, such asMG and FFT, the spa-
tial locality-based policy is quite effective, both in terms
of recall and precision. The temporal locality-based algo-
rithm (that monitors the sequence of the accessed pages)
is also able to detect regularity in the access pattern with
similar effectiveness. There are applications, such asLUnon-
ont. and MMCubing, however, for which the tem-
poral locality-based algorithm significantly outperformsthe
spatial locality-based one, both in terms of improving per-
formance and being precise. Note that the temporal-locality
based approach needs fine-grained information on the se-
quence of page accesses, which in our setup is produced by
PATH. Remarkably, temporal locality-based prefetchingre-
ducesthe I/O bandwidth requirements forLU non-
ont.
because artificially touching pages in the prefetched set pre-
vents them from being replaced. Finally, for some appli-
cations such asSPECJbb, neither prefetching algorithm is
effective.

6.4 Effect of PAB Size

For some of the applications that benefit from fine-grained
page access information, we evaluate the effect of different
PAB sizes on the projected execution time and the runtime
overhead. Figures 10 and 11 show this effect for page re-
placement and prefetching algorithms, respectively. In these
experiments, we vary the size of the PAB from 128 to 32K
entries. As the PAB size increases, we expect that an in-
creased number of page accesses are filtered by PATH and
thus the page access information generated becomes less ac-
curate. At the same time, we expect processing overhead to
decrease as fewer page accesses are recorded.

As we see in these graphs, runtime overhead drops sig-
nificantly as PAB size increases. At the same time, the pro-
jected execution time does not seem to be very sensitive as
the PAB size is increased from 128 to 2K entries. One ex-
ception isFFT with LIRS (shown in Figure 1). Overall, a
2K-entry PAB seems to be a good tradeoff between over-
head and accuracy.

6.5 Analysis of Overhead

In this section, we compare PATH’s runtime overhead to the
software-only approach. To measure PATH’s basic overhead,
we emulatedexceptions generated by PATH in a real envi-

39

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

128 256 512 1K 2K 4K 8K 16K 32K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800

128 256 512 1K 2K 4K 8K 16K 32K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 50

 100

 150

 200

 250

 300

 350

 400

128 256 512 1K 2K 4K 8K 16K 32K
 0

 10

 20

 30

 40

 50

 60

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

(a) LU Contiguous (b) Ocean Contiguous (c) FFT Region-Specific
LIRS (575 MB) LIRS (780 MB) Replacement (576 MB)

Figure 10. The effect of PAB size on the projected execution time and runtime overhead for page replacement algorithms.

 0

 50

 100

 150

 200

 250

 300

128 256 512 1K 2K 4K 8K 16K 32K
 0

 1

 2

 3

 4

 5

 6

 7

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

128 256 512 1K 2K 4K 8K 16K 32K
 0

 1

 2

 3

 4

 5

 6

 7

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li

o
n

 c
y

c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

(a) MMCubing Prefetching (234 MB) (b) LU Non Contiguous Prefetching (312 MB)

Figure 11. The effect of PAB size on the projected execution time and runtime overhead for prefetching algorithms.

Oc
ea

n (
PA

TH
)

Oc
ea

n (
SO

FT
)

LU
-n

on
c.

(P
AT

H)

LU
-n

on
c.

(S
OF

T)
MG

 (P
AT

H)
MG

 (S
OF

T)
Mr

Ba
ye

s (
PA

TH
)

Mr
Ba

ye
s (

SO
FT

)
CG

 (P
AT

H)
CG

 (S
OF

T)

MM
Cu

bin
g (

PA
TH

)

MM
Cu

bin
g (

SO
FT

)
FF

T
(P

AT
H)

FF
T

(S
OF

T)
LU

-co
n.

(P
AT

H)

LU
-co

n.
(S

OF
T)

FM
M

(P
AT

H)

FM
M

(S
OF

T)
BT

 (P
AT

H)
BT

 (S
OF

T)
SP

EC
JB

B
(P

AT
H)

SP
EC

JB
B

(S
OF

T)
SP

 (P
AT

H)
SP

 (S
OF

T)

�

��

��

��

��

��

��

��

	�

�

���
���

���

��

��

��

���

���

��

�
��

��
��

��
��

��
���

�

Figure 12. Runtime overhead of PATH-generated information compared to the software-only approach (SOFT). To help
visualize the comparison, all runtime overhead numbers larger than 100% are truncated.

ronment using a 1.5GHz AMD Athlon processor. For each
application, we collected a trace of PAL overflow exceptions
along with the content of the PAL at the time of exception.
Each overflow event is time-stamped using the number of in-
structions retired since the start of the application. We then
replayedthese traces by artificially generating exceptions at
the same rate as in the trace by using hardware performance
counter overflow exceptions. At each exception, we read the
contents of the PAL from the trace and updated the LRU

stack and MRC data structures. To calculate the overhead,
we measure the total number of CPU cycles needed to exe-
cute a certain number of application instructions (e.g. a few
tens of billions), with and without PATH exceptions.

The software-only approach was implemented in Linux-
2.6.15. We measure only the cost of maintaining the active
set which includes the cost of extra page protection faults,
page table walks to set the protection bits, flushing the corre-

40

sponding TLB entries, and occasionally trimming the active
set using CLOCK.

Figure 12 shows the runtime overhead of both PATH and
the software-only approach across the selected set of appli-
cations, as a function of active set size (PAB size in PATH).
There are a number of important observations. First, the
overhead of the software-only approach is high for a num-
ber of applications (e.g.,FFT, LU-non
., MMCubing andSPECJbb) even with a fairly large active set size. Second, the
runtime overhead of PATH is very small in all applications
if a large PAB (e.g., 32K) is used. For the designed 2K size,
the overhead of the PATH remains less than 3% in all but two
applications (LU-non
., and SPECJbb for both of which
the overhead is less than 6% with a 2K-entry PAB). Such
a small overhead is easily paid off by the substantial per-
formance improvement achieved by the PATH-generated in-
formation when the system is under memory pressure. Note
that the OS can turn off PATH when the system is not un-
der memory pressure, and as a result there will not be any
unwanted runtime overhead.

7. Related Work
Zhouet al. [33] suggest the use of a custom-designed hard-
ware monitor on memory bus to efficiently calculate MRC
online. In their approach much of the overhead of comput-
ing MRC can be avoided by offloading to hardware almost
completely. In contrast, we argue in favor of having a sim-
pler hardware that provides lower-level but more generic
information about page accesses that can be used to solve
many problems including the memory allocation problem.
We have shown that with the use of fine-grained page access
information the operating system can make better decisions
on at least three different problems. In terms of hardware
resources required, the data structures in PATH are simpler
and smaller, and unlike the MRC monitor in Zhouet al.’s ap-
proach, do not grow proportionally with the size of system
physical memory.

Also, Cooperative Robust Automatic Memory Manage-
ment(CRAMM) collects detailed memory reference infor-
mation to be used to adjust the heap size of a Java virtual ma-
chine dynamically in order to prevent a severe performance
drop during garbage collection due to paging [30]. The au-
thors have used the software-only approach to track MRC
in order to predict memory usage and adjust the JVM heap
size accordingly. To reduce overhead, CRAMM dynamically
adjusts the size of the active set by monitoring runtime over-
head. Such an approach is presumably effective in tracking
MRC for JVM’s heap size. However, our results show that
for many memory intensive applications, increasing the size
of the active set will result in significant performance degra-
dation of memory management algorithms.

Tracking memory accesses at the hardware level has been
suggested by other researchers, although to address different
problems. For instance, Qureshi et al. [24] suggested the use

of hardwareutility monitors to monitor memory accesses
solely to compute MRC at the granularity of individual CPU
cache lines.

8. Concluding Remarks
Traditionally, operating systems track application memory
accesses either by monitoring page faults or by periodically
scanning page table entries. With this approach, important
information on the reuse distance and temporal proximity of
virtual page accesses that can be used for improving mem-
ory management algorithms is unavailable. Previous work
has suggested the use of a purely software-based approach
that uses virtual page protection to track page accesses more
accurately. While this software-based approach is effective
for some applications, for many applications it incurs unac-
ceptably high overhead.

In this paper, we proposed novel Page Access Track-
ing Hardware (PATH) that records page access sequences
in a relatively accurate yet efficient way. We showed how
the operating system can exploit the information provided
by PATH to improve memory management in three differ-
ent ways: adaptive page replacement, process memory al-
location, and virtual memory prefetching. Our experimen-
tal analysis showed that with this hardware support, signif-
icant performance improvements, as high as 500%, can be
achieved for applications under memory pressure. Unlike
software-only approaches, the runtime overhead of PATH re-
mains small (under 3%-6%) across a wide range of applica-
tions.

We believe that additional uses of information provided
by PATH will become apparent over time, as we experiment
with a wider variety of memory intensive applications. Two
possible ideas are super page management and page place-
ment in a NUMA architecture.

An important extension is to explore the use of PATH in a
multiprocessor setup. There are important open issues, such
as how to collectively use PATH traces of parallel applica-
tions that are generated on multiple processors. Similarly,
work needs to be done in perfecting PATH support for mul-
tithreaded applications. Currently, the PATH trace generated
for an application running on a CPU is processed into a sin-
gle LRU stack or the Page Proximity Graph. If the applica-
tion is multithreaded, this approach results in intermingling
traces of several threads into a single aggregate data struc-
ture. As a result, important information about both reuse
distance and temporal proximity of page accesses on a per
thread basis is lost. To solve this problem, simple extensions
can be made to the software layer to keep track of multiple
LRU stacks on a per thread basis.

References
[1] D. A. Bader, U. Roshan, and A. Stamatakis. Computational

grand challenges in assembling the tree of life: Problems and
solutions.Proc. of ACM/IEEE conference on Supercomputing
(SC), tutorial session, 2005.

41

[2] S. Bansal and D. S. Modha. CAR: Clock with adaptive
replacement. InProc. of the USENIX Conference on File
and Storage Technologies (FAST), 2004.

[3] Bochs. An open source IA-32 emulator.http:// bochs.sourceforge.net.

[4] A. D. Brown and T. C. Mowry. Taming the memory hogs:
Using compiler-inserted releases to manage physical memory
intelligently. InProc. of the Symposium on Operating System
Design and Implementation (OSDI), San Diego, CA, 2000.

[5] R. W. Carr and J. L. Hennessy. WSCLOCK: a simple and
effective algorithm for virtual memory management. InProc.
of the 8th ACM symposium on Operating systems principles,
(SOSP), Pacific Grove, CA, 1981.

[6] J. Chapin. A fresh look at memory hierarchy management. In
Proc. of the 6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), page 130, 1997.

[7] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards
application/file-level characterization of block references: a
case for fine-grained buffer management. InProc. of the 2000
ACM SIGMETRICS, Santa Clara, CA, 2000.

[8] M. Cox and D. Ellsworth. Application-controlled demand
paging for out-of-core visualization. InProc. of the 8th
conference on Visualization ’97 (VIS), 1997.

[9] G. Glass and P. Cao. Adaptive page replacement based on
memory reference behavior. InProc. of ACM SIGMETRICS,
Seattle, WA, 1997.

[10] G. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-
base pattern classification in buffer caching. InProc. of
the 6th Symp. on Operating System Design and Implemen-
tation(OSDI), San Francisco, CA, 2004.

[11] Illimine. An open–source data mining toolset.http://
illimine.cs.uiuc.edu.

[12] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: an effective
improvement of the clock replacement. InProc. of the Usenix
Technical Conference (USENIX’05), Anaheim, CA, 2005.

[13] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache
performance.SIGMETRICS Performance Evaluation Review,
30(1), 2002.

[14] T. Johnson and D. Shasha. 2Q: a low overhead high
performance buffer management replacement algorithm. In
Proc. of the 20th International Conference on Very Large
Databases (VLDB), Santiago, Chile, 1994.

[15] D. Joseph and D. Grunwald. Prefetching using markov
predictors.IEEE Trans. on Computers, 48(2):121–133, 1999.

[16] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive
caching for demand prepaging. InProc. of the 3rd Interna-
tional Symposium on Memory Management (ISMM), Berlin,
Germany, 2002.

[17] Y. H. Kim, M. D. Hill, and D. A. Wood. Implementing stack
simulation for highly-associative memories. InProc. of the
1991 ACM SIGMETRICS, San Diego, CA, 1991.

[18] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap.

In Proc. of the 2005 Conference on Programming Language
Design and Implementation (PLDI), Chicago, IL, 2005.

[19] R. L. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
techniques and storage hierarchies.IBM Systems Journal,
9(2):78–117, 1970.

[20] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. InProc. of the 2nd USENIX
Conference on File and Storage Technologies (FAST), San
Francisco, CA, 2003.

[21] MrBayes. Bayesian inference of phylogeny.http:// mr-
bayes.csit.fsu.edu.

[22] NASA Advanced Supercomputing. NAS Parallel Bench-
marks.http://www.nas.nasa.gov/Software/NPB/.

[23] V. Phalke and B. Gopinath. An inter-reference gap modelfor
temporal locality in program behavior. InProc. of the ACM
SIGMETRICS, Ottawa, Canada, 1995. ACM Press.

[24] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism
to partition shared caches. InProc. of the 39th MICRO
Symposium, pages 423–432, Washington, DC, USA, 2006.

[25] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-based
TLB preloading. InProc. of the 27th Intl. Symposium on
Computer Architecture (ISCA), Vancouver, Canada, 2000.

[26] Y. Smaragdakis, S. Kaplan, and P. Wilson. The EELRU
adaptive replacement algorithm.Performance Evaluation,
53(2):93–123, 2003.

[27] Standard Performance Evaluation Corporation (SPEC).
SPECjbb2000.http://www.spec.org/jbb2000.

[28] M. Vilayannur, A. Sivasubramaniam, and M. Kandemir. Pro-
active page replacement algorithm for scientific applications:
A characterization. InProc. IEEE Intl. Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, 2005.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. SIGARCH Computer Architecture News,
23(2):24–36, 1995.

[30] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
CRAMM: Virtual memory support for garbage-collected
applications. InProc. of the Symposium on Operating System
Design and Implementation (OSDI), Seattle, WA, 2006.

[31] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler,
M. A. Langston, and N. F. Samatova. Genome-scale computa-
tional approaches to memory-intensive applications in systems
biology. InProc. of the ACM/IEEE conference on Supercom-
puting (SC), Seattle, WA, 2005.

[32] F. Zhou, R. von Behren, and E. Brewer. AMP: Program
context specific buffer caching. InProc. of the USENIX
Technical Conference (USENIX’05), Anaheim, CA, 2005.

[33] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar. Dynamic tracking of page miss ratio curve
for memory management. InProc. of the 11th Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Boston, MA, 2004.

42

	Introduction
	Design of PATH Architecture
	Low-level Software Structures
	LRU Stack
	Miss Rate Curve (MRC)

	Example Use Cases
	Adaptive Replacement Policies
	Region-Specific Replacement

	Process Memory Allocation
	Virtual Memory Prefetching

	Experimental Framework
	Applications

	Experimental Results
	Adaptive Replacement Policies
	Process Memory Allocation
	Virtual Memory Prefetching
	Effect of PAB Size
	Analysis of Overhead

	Related Work
	Concluding Remarks

