
01 / 16

A Design for 
Comprehensive Kernel 

Instrumentation

1

Peter Feiner Angela Demke Brown Ashvin Goel
peter@cs.toronto.edu demke@cs.toronto.edu ashvin@eecg.toronto.edu

University of Toronto



01 / 16

Motivation
Transparent fault isolation for device drivers

‣ Want to isolate existing driver binaries

Inspired by Byte Granularity Isolation

‣ Requires source code

Use Dynamic Binary Instrumentation (DBI)

‣ Does not require source code

‣ Inspect & modify instructions before they execute
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Motivation
DBI applied for debugging and security at the user level

‣ Memcheck - checks memory errors

‣ Program Shepherding - control flow integrity

Various user-level DBI frameworks are available

‣ APIs for inspecting and modifying instructions

‣ e.g., Valgrind, DynamoRIO, Pin

These frameworks don’t work in the kernel

‣ What would it take?
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OS

The Key Difference
User frameworks sit between 
applications and the OS

‣ Interpose on system calls

‣ Take advantage of OS services, e.g. I/O

Kernel frameworks need to sit 
between the OS & CPU

‣ Isn’t that what hypervisors do?
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Our Approach
We need to combine a DBI 
framework with a hypervisor

‣ Choice 1: Port DBI to an existing hypervisor

• Pros: both exist

• Cons: both very complex

‣ Choice 2: Create a minimal hypervisor, 
similar to SecVisor’s approach

• Pros: easier to do

• Pros: possibly higher performance

We designed a minimal hypervisor 
around a DBI framework

‣ Let’s see how DBI works & what it needs
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DBI Technique
Copy basic blocks of x86 
code into code cache before 
execution

‣ Code executed from cache

‣ Instrumentation added to copy

‣ Manipulate copies to return 
control to the dispatcher
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DBI Requirements
Never execute machine’s original code

‣ Necessary for security applications

Hide framework from instrumented code

‣ Instrumented code should observe un-instrumented machine state

Dispatcher should use instrumented code with care

‣ Implementation cannot use non-reentrant instrumented code

Detect changes to the original code

‣ Invalidate stale code in the cache

Preserve multicore concurrency

‣ Essential for performance and accuracy
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We’ll look at the first three in more detail

Meeting DBI Requirements
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Never Execute Original Code
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Never Execute Original Code
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Redirecting Entry Points
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Redirecting Entry Points

10

Entry 1

Entry 2

Table 
Register

Dispatcher

OS Binaries

Entry 1

Entry 2

Shadow 
Register Code Cache

‣ Can’t write to table register, otherwise loose control

‣ Can’t drop the write, otherwise you loose transparency

Descriptor Table

Shadow Table



01 / 16

Transparency
Need to hide DBI framework from instrumented code

‣ Sometimes essential for correctness

Many transparency issues, including

‣ Code cache return addresses

‣ Shadowed registers

‣ Exception stack frame

‣ Interrupt stack frame
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Exception Transparency
Dispatching kernel’s exception handlers is tricky 
because they inspect machine state

‣ Registers stolen by instrumentation

‣ Address of instruction that triggers the exception

• Handlers need to see original instruction addresses

• Linux panics on page faults from non white-listed instructions

• Problem is that code cache isn’t on the white list

• Solution is to translate from code cache to original address

Solution for interrupt handlers is similar
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Interrupt Transparency
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Delay interrupts until next code-cache exit
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Code is not reentrant if it is unsafe to execute before 
other executions of the same code finish

‣ Dispatcher cannot use any non-reentrant OS code, e.g. print, 
because the non-reentrant code might be currently executing

Say, print consists of basic blocks P1, P2

‣ P1 has executed from code cache

‣ Dispatcher copies P2

‣ Dispatcher uses print for debugging and invokes P1

‣ print fails because it is non-reentrant

Reentrance
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Reentrance Solution
Typical solution is to reimplement non-reentrant code 
using lower-level uninstrumented code

‣ e.g., user-level DBI has custom print that makes system calls

OS-level framework has no lower-level code

‣ Dispatcher must be entirely self sufficient

‣ Implement our own heap

Some code too difficult to implement from scratch

‣ Detach and reattach framework to use existing OS code

‣ Have custom user program make system calls on our behalf

• Framework cannot depend on user program’s correctness
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Our Proposal
We chose to port DynamoRIO to a minimal hypervisor 
because it is

‣ Open source

‣ Performance oriented

‣ Mature

Applications

‣ Transparent fault isolation

‣ Dynamic optimization 

We will open source our port!

‣ What would you do with in-kernel DBI?
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Backup Slides
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Existing Hypervisors
VMWare

‣ Uses a code cache to translate sensitive instructions

‣ Does not have an instrumentation API

PinOS

‣ Pin DBI + Xen Hypervisor

‣ Does whole-system instrumentation (user + kernel)

‣ Dispatching is much slower for whole-system (50x slowdown)

‣ Delegates I/O to a separate uninstrumented VM

Neither is open source
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Minimal Hypervisor
Simpler than a full-fledged hypervisor

‣ No multiplexing

‣ Shadow page tables have same address mappings, just more 
restrictive permissions

‣ Don’t need to be completely transparent

• We can piggy-back on existing OS code, like segment selectors 
for CPU-private data
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Design Assumptions
Once booted, OS runs exclusively in 64-bit long mode

‣ Emulating obsolete x86 modes would be a pain

‣ Confirmed validity on Linux by inspection

‣ We believe it is valid on Windows

Can store dispatcher and code cache in pages that are 
in all page tables at the same virtual addresses

‣ Otherwise, we need to steal RAM from the OS at bootup

‣ Provided by Linux

‣ We believe this is provided by Windows

Design should work with OS that meets assumptions

‣ We are currently targeting Linux
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Hardware Virtualization Extensions
Do not make implementation simpler

‣ Removes the need to inspect sensitive instructions

‣ However, we already can inspect sensitive instructions

Could make implementation more complex

‣ Need to emulate instructions that cause exits

‣ Easier for us to emit fix-up code in the code cache

Could improve performance

‣ Extended page tables might perform better than shadow

‣ We want to experiment with this
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