
01 / 16

A Design for
Comprehensive Kernel

Instrumentation

1

Peter Feiner Angela Demke Brown Ashvin Goel
peter@cs.toronto.edu demke@cs.toronto.edu ashvin@eecg.toronto.edu

University of Toronto

01 / 16

Motivation
Transparent fault isolation for device drivers

‣ Want to isolate existing driver binaries

Inspired by Byte Granularity Isolation

‣ Requires source code

Use Dynamic Binary Instrumentation (DBI)

‣ Does not require source code

‣ Inspect & modify instructions before they execute

2

x86 Driver
CodeKernel

01 / 16

Motivation
Transparent fault isolation for device drivers

‣ Want to isolate existing driver binaries

Inspired by Byte Granularity Isolation

‣ Requires source code

Use Dynamic Binary Instrumentation (DBI)

‣ Does not require source code

‣ Inspect & modify instructions before they execute

2

x86 Driver
Code

Instrumented
DriverKernel

01 / 16

Motivation
Transparent fault isolation for device drivers

‣ Want to isolate existing driver binaries

Inspired by Byte Granularity Isolation

‣ Requires source code

Use Dynamic Binary Instrumentation (DBI)

‣ Does not require source code

‣ Inspect & modify instructions before they execute

2

x8
6

Driv
er

Cod

e

x86 Driver
Code

Instrumented
DriverKernel DBI

01 / 16

Motivation
DBI applied for debugging and security at the user level

‣ Memcheck - checks memory errors

‣ Program Shepherding - control flow integrity

Various user-level DBI frameworks are available

‣ APIs for inspecting and modifying instructions

‣ e.g., Valgrind, DynamoRIO, Pin

These frameworks don’t work in the kernel

‣ What would it take?

3

01 / 16

OS

The Key Difference
User frameworks sit between
applications and the OS

‣ Interpose on system calls

‣ Take advantage of OS services, e.g. I/O

Kernel frameworks need to sit
between the OS & CPU

‣ Isn’t that what hypervisors do?

4

App
s

DBI

CPU

01 / 16

Our Approach
We need to combine a DBI
framework with a hypervisor

‣ Choice 1: Port DBI to an existing hypervisor

• Pros: both exist

• Cons: both very complex

‣ Choice 2: Create a minimal hypervisor,
similar to SecVisor’s approach

• Pros: easier to do

• Pros: possibly higher performance

We designed a minimal hypervisor
around a DBI framework

‣ Let’s see how DBI works & what it needs

5

O
S

Kernel DBI

Apps

CPU

01 / 16

DBI Technique
Copy basic blocks of x86
code into code cache before
execution

‣ Code executed from cache

‣ Instrumentation added to copy

‣ Manipulate copies to return
control to the dispatcher

6

Execute from
Code Cache

Dispatch

Cached? Copy BlockNo

Yes

x86 Code

Start

01 / 16

DBI Requirements
Never execute machine’s original code

‣ Necessary for security applications

Hide framework from instrumented code

‣ Instrumented code should observe un-instrumented machine state

Dispatcher should use instrumented code with care

‣ Implementation cannot use non-reentrant instrumented code

Detect changes to the original code

‣ Invalidate stale code in the cache

Preserve multicore concurrency

‣ Essential for performance and accuracy

7

01 / 16

We’ll look at the first three in more detail

Meeting DBI Requirements

8

User Kernel

Never Execute
Original Code

New Threads,
Signals Kernel Entry Points

Transparency Signals Interrupts,
Exceptions

Reentrance Use OS Code Implement Everything
From Scratch

Detect Code Changes System Calls
mmap, mprotect, etc. Shadow Page Tables

Concurrency Locking,
Thread Private CPU Private

01 / 16

Never Execute Original Code

9

User Code

ExceptionsInterrupts

OS Binaries
(kernel, drivers)

User Mode
Supervisor Mode

01 / 16

Never Execute Original Code

9

User Code

ExceptionsInterrupts

User Mode
Supervisor Mode

DispatcherCode Cache

‣ Load kernel module that redirects
entry points to the dispatcher

OS Binaries
(kernel, drivers)

01 / 16

Redirecting Entry Points

10

Entry 1

Entry 2

Table
Register OS Binaries

Descriptor Table

01 / 16

Redirecting Entry Points

10

Entry 1

Entry 2

Table
Register

Dispatcher

OS Binaries

Entry 1

Entry 2

Code Cache

Descriptor Table

Shadow Table

01 / 16

Redirecting Entry Points

10

Entry 1

Entry 2

Table
Register

Dispatcher

OS Binaries

Entry 1

Entry 2

Code Cache

‣ Can’t write to table register, otherwise loose control

Descriptor Table

Shadow Table

01 / 16

Redirecting Entry Points

10

Entry 1

Entry 2

Table
Register

Dispatcher

OS Binaries

Entry 1

Entry 2

Shadow
Register Code Cache

‣ Can’t write to table register, otherwise loose control

‣ Can’t drop the write, otherwise you loose transparency

Descriptor Table

Shadow Table

01 / 16

Transparency
Need to hide DBI framework from instrumented code

‣ Sometimes essential for correctness

Many transparency issues, including

‣ Code cache return addresses

‣ Shadowed registers

‣ Exception stack frame

‣ Interrupt stack frame

11

01 / 16

Exception Transparency
Dispatching kernel’s exception handlers is tricky
because they inspect machine state

‣ Registers stolen by instrumentation

‣ Address of instruction that triggers the exception

• Handlers need to see original instruction addresses

• Linux panics on page faults from non white-listed instructions

• Problem is that code cache isn’t on the white list

• Solution is to translate from code cache to original address

Solution for interrupt handlers is similar

12

01 / 16

Interrupt Transparency

13

H = Interrupt Handler
I = Instrumentation
 = Interrupt

01 / 16

Interrupt Transparency

13

A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

01 / 16

Interrupt Transparency

13

A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

01 / 16

Interrupt Transparency

13

IHA

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

01 / 16

Interrupt Transparency

13

IHA A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

01 / 16

Interrupt Transparency

13

IH BA A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

01 / 16

Interrupt Transparency

13

Copy A

IH BA A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher

01 / 16

Interrupt Transparency

13

A

Copy A

IH BA A

A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

Original
Addresses

01 / 16

Interrupt Transparency

13

A

Copy A

IH BA A

A I

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

Original
Addresses

01 / 16

Interrupt Transparency

13

A

Copy A

IH BA A

A I

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

Original
Addresses

01 / 16

Delay interrupts until next code-cache exit

Interrupt Transparency

13

A

Copy A

IH BA A

A I

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

Original
Addresses

01 / 16

Delay interrupts until next code-cache exit

Interrupt Transparency

13

A

Copy A

IH BA A

A I

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

Original
Addresses

01 / 16

Delay interrupts until next code-cache exit

Interrupt Transparency

13

A

Copy A

IH BA A

A I A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

A
Original

Addresses

01 / 16

Delay interrupts until next code-cache exit

Interrupt Transparency

13

A

Copy A

IH BA A

A I A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

A
Original

Addresses

01 / 16

Delay interrupts until next code-cache exit

Copy IH

Interrupt Transparency

13

A

Copy A

IH BA A

A I A

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

A
Original

Addresses

01 / 16

Delay interrupts until next code-cache exit

Copy IH

Interrupt Transparency

13

A

IHCopy A

IH BA A

A I A

IH

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

A
Original

Addresses

01 / 16

Delay interrupts until next code-cache exit

Copy IH

Interrupt Transparency

13

A

IHCopy A Copy B

IH BA A

A I A

IH

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

A
Original

Addresses

01 / 16

Delay interrupts until next code-cache exit

Copy IH

Interrupt Transparency

13

A

IHCopy A Copy B

IH BA A

BA I A

IH B

H = Interrupt Handler
I = Instrumentation
 = Interrupt

Original Code

Dispatcher Code Cache

A
Original

Addresses

01 / 16

Code is not reentrant if it is unsafe to execute before
other executions of the same code finish

‣ Dispatcher cannot use any non-reentrant OS code, e.g. print,
because the non-reentrant code might be currently executing

Say, print consists of basic blocks P1, P2

‣ P1 has executed from code cache

‣ Dispatcher copies P2

‣ Dispatcher uses print for debugging and invokes P1

‣ print fails because it is non-reentrant

Reentrance

14

Copy P2P1 P1 ✗

DispatcherCode Cache

01 / 16

Reentrance Solution
Typical solution is to reimplement non-reentrant code
using lower-level uninstrumented code

‣ e.g., user-level DBI has custom print that makes system calls

OS-level framework has no lower-level code

‣ Dispatcher must be entirely self sufficient

‣ Implement our own heap

Some code too difficult to implement from scratch

‣ Detach and reattach framework to use existing OS code

‣ Have custom user program make system calls on our behalf

• Framework cannot depend on user program’s correctness

15

01 / 16

Our Proposal
We chose to port DynamoRIO to a minimal hypervisor
because it is

‣ Open source

‣ Performance oriented

‣ Mature

Applications

‣ Transparent fault isolation

‣ Dynamic optimization

We will open source our port!

‣ What would you do with in-kernel DBI?

16

01 / 16

Backup Slides

17

01 / 16

Existing Hypervisors
VMWare

‣ Uses a code cache to translate sensitive instructions

‣ Does not have an instrumentation API

PinOS

‣ Pin DBI + Xen Hypervisor

‣ Does whole-system instrumentation (user + kernel)

‣ Dispatching is much slower for whole-system (50x slowdown)

‣ Delegates I/O to a separate uninstrumented VM

Neither is open source

18

01 / 16

Minimal Hypervisor
Simpler than a full-fledged hypervisor

‣ No multiplexing

‣ Shadow page tables have same address mappings, just more
restrictive permissions

‣ Don’t need to be completely transparent

• We can piggy-back on existing OS code, like segment selectors
for CPU-private data

19

01 / 16

Design Assumptions
Once booted, OS runs exclusively in 64-bit long mode

‣ Emulating obsolete x86 modes would be a pain

‣ Confirmed validity on Linux by inspection

‣ We believe it is valid on Windows

Can store dispatcher and code cache in pages that are
in all page tables at the same virtual addresses

‣ Otherwise, we need to steal RAM from the OS at bootup

‣ Provided by Linux

‣ We believe this is provided by Windows

Design should work with OS that meets assumptions

‣ We are currently targeting Linux

20

01 / 16

Hardware Virtualization Extensions
Do not make implementation simpler

‣ Removes the need to inspect sensitive instructions

‣ However, we already can inspect sensitive instructions

Could make implementation more complex

‣ Need to emulate instructions that cause exits

‣ Easier for us to emit fix-up code in the code cache

Could improve performance

‣ Extended page tables might perform better than shadow

‣ We want to experiment with this

21

