
The Price of Generality in Spatial Indexing

Bogdan Simion, Daniel N. Ilha, Angela Demke Brown, Ryan Johnson
Department of Computer Science, University of Toronto

{bogdan, demke, ryan.johnson} @cs.toronto.edu, daniel.n.ilha@gmail.com

ABSTRACT
Efficient indexing can significantly speed up the processing of large
volumes of spatial data in many BigData applications. Many new
emerging spatial applications (e.g., biomedical imaging, genome
analysis, etc.) have varying indexing requirements, thus, a unified
indexing infrastructure for implementing new indexing schemes
without requiring knowledge of database internals is beneficial.
However, designing a generic indexing framework is a challenging
task. We study the issues with general indexing schemes, such as
the GiST (used in PostGIS) and expose the tradeoff between gen-
erality and performance, showing that generality can be severely
detrimental to performance if the abstractions are not carefully de-
signed. Our experiments indicate that the GiST framework, as im-
plemented in PostgreSQL/PostGIS, performs 4.5-6x slower for fil-
tering records through the index, compared to a custom R-tree im-
plementation. We also isolate the GiST-specific overhead by imple-
menting the framework outside the DBMS, showing that the GiST-
based R-tree is up to 2x slower than the raw R-tree algorithm that it
uses internally. We conclude that although a generic framework for
a wide range of spatial BigData application domains is desirable,
implementers of new frameworks need to be careful in designing
the abstractions to avoid paying a hefty performance penalty.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Performance, Measurement, Experimentation, Algorithms

Keywords
Spatial databases, BigData, Spatial indexing, General Indexing Frame-
work, GiST, R-tree.

1. INTRODUCTION
Spatial BigData processing has gained increased importance in

recent years, due to emerging new applications that operate on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org. ACM SIGSPATIAL GIS
- BigSpatial ’13, November 05-08, 2013. Orlando, FL, USA
Copyright c© 2013 ACM 978-1-4503-2534-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2534921.2534923.

huge volumes of data, such as medical imaging, genome sequenc-
ing, land information surveys, or environmental impact assessment.
With the growth of spatial data, a key performance factor in spa-
tial processing is the use of a spatial indexing mechanism. With
BigData, the amount of useful data to be retrieved from a massive
dataset is generally fairly small. As a result, an efficient index is
crucial in fast data retrieval, which means close attention must be
paid to index design. Given that many scientists in various fields
are rolling out custom data processing solutions for their BigData
needs, a generic framework for indexing multiple data domains,
such as biomedical images, genome sequence data, audio/video
data, fingerprints, biomolecular data, etc., seems like a promising
avenue of exploration. However, designing a framework to support
indexes for any of the emerging BigData applications is not an easy
task.

Traditional database management systems (DBMS) are specifi-
cally designed for storing and processing large volumes of informa-
tion, and making use of efficient indexing to query huge amounts
of data very fast. As a result, they are a suitable candidate for
building spatial analysis applications. Due to the increasing vari-
ety of emerging application domains, database designers are faced
with implementing new efficient index structures for each of these
domains, and integrating them into a rather large DBMS code-
base. Recognizing this problem, researchers have attempted to
design more generalized indexing frameworks, such as the Gen-
eralized Index Search Tree (GiST) [5], that facilitates an easily
pluggable index implementation for any new type of data domain.
PostgreSQL/PostGIS is one of the early adopters of the GiST as a
generic framework for building R-trees and B-trees.

While designing a framework for building and accessing a spa-
tial index in a generic way simplifies the programmer task when
adding new index implementations, the abstraction has two major
problems to address. First, generalizing the operations for any con-
ceivable type of index structure and its possible variations is not
trivial. For example, although the GiST framework supports the
use of B+trees and R-trees, it lacks flexibility in supporting varia-
tions like R*-trees, or bulk loading, which have desirable properties
for speeding up searches in many spatial scenarios.

The second problem is that the abstraction involved in design-
ing a generic one-size-fits-all framework for implementing indexes,
can pose a considerable overhead that ends up hurting overall per-
formance of spatial queries. If custom implementations of domain-
specific indexes outperform by a wide margin their counterparts
implemented through a general indexing framework, then the de-
sign needs to be re-evaluated.

In this work, we illustrate the pitfalls of a generic framework
(GiST) for indexing large volumes of spatial data in a state-of-the-
art spatial DBMS (PostGIS) and show there is a tradeoff between

performance and generality that needs to be carefully considered
when designing a new generic indexing framework.

Our main contributions are three-fold:
a. We conduct an analysis of PostgreSQL/PostGIS (the only

open-source OGC-compliant DBMS), to show where time is spent
in processing spatial queries involving spatial indexes. We find that
the DBMS imposes a large overhead over a raw R-tree implemen-
tation, which is partly due to the rigidity of the GiST framework.

b. We isolate the GiST performance from the DBMS implementation-
specific overheads, by implementing an optimized stripped-down
version of the GiST, outside of PostgreSQL, using the same insertion-
based strategy (NLA) used in PostgreSQL. We compare the perfor-
mance of the external GiST framework against several raw R-tree
implementations, both insertion-based and bulk-loaded. The GiST
not only is 1.5-2x slower than its raw NLA strategy counterpart, but
also 4.5-6x slower than bulk-loaded R-trees, on all page sizes.

c. We show that although a one-size-fits-all indexing framework
is very desirable, the approach of the GiST is rather flawed. We
point out that the key problems lie in the restrictive nature of the
set of predefined-operations, which draw the abstraction line in the
wrong place, causing a negative performance impact.

2. BACKGROUND AND RELATED WORK

2.1 Spatial processing and indexing
Spatial databases employ a two step evaluation mechanism. The

first step is filter, which returns a superset of the candidate objects
satisfying a spatial predicate, by comparing an approximation of
actual objects (called the minimum bounding rectangle, or MBR).
The second step is refinement, in which the actual geometry of the
candidate objects are inspected. The filter step tries to eliminate
as many objects as possible, since the refinement step uses time-
consuming computational geometry algorithms. To avoid evaluat-
ing the MBRs for all records, the candidate space can be pruned us-
ing a spatial index. The MBR approximations are stored in spatially-
aware data-structures such as R-trees, Quadtrees, etc, to only test
the MBRs located in the spatial ranges that are relevant to the query.

2.2 R-tree strategies
The R-Tree is a disk-efficient data structure, which stores a direc-

tory of entries into its internal nodes (or pages) to index the MBRs.
R-trees are similar to B+Trees, but support N-dimensional data, by
storing the MBRs of geometries as keys in the internal node entries.
This support comes at the cost of page overlap which may degrade
search performance (due to multi-path probing) and is dependent
on how internal nodes and leaves are grouped. To maximize the
tree search performance, many heuristics and variations of the data
structure exist that attempt to produce the best grouping of pages
and leaves. These are divided into three types:

a. Page-splitting insertion heuristics. These heuristics apply
to how nodes are split when a record is to be inserted in a node that
is already at maximum capacity. These heuristics play a significant
role on minimizing overlap of internal pages, but they tend to be
limited on the improvement they can provide due to their suscepti-
bility to insertion order. The Quadratic split [4] attempts to reduce
internal page area (and thus overlap) by looking to group children
that result in the smallest aggregate bounding box. The New Linear
Algorithm (NLA) [1] attempts to reduce internal page overlap by
grouping children in pages that are as far away from each other as
possible (directly minimizes overlap).

b. Bulk-loading strategies. When the dataset is available a pri-
ori, a bulk-load heuristic can leverage the spatial data distribution
to build better packed R-trees. As a result, bulk-loaded R-trees

minimize overlap more efficiently than insertion-based heuristics.
Bulk-loading is particularly reasonable for applications where the
data is either read-only or does not change often. Such methods in-
clude the Hilbert heuristic [6], which uses the Hilbert space-filling
curve and its good locality properties to sort pages according to the
Hilbert distance metric and group them. The Sort-Tile-Recursive
(STR) [7] strategy leverages the properties of k-d trees into the R-
Tree structure, by sorting the records on each axis and splitting the
space along each dimension into stripes of equal record count.

c. R-tree variants. The R*-tree [3] uses a custom split heuristic
and a node dissolution policy which gets around the limitations of
split heuristics and generates much better results, but has a more
expensive insertion operation. Basically, when a node overflows,
a portion of the entries are removed and reinserted, resulting in a
better tree in terms of reducing node overlap.

2.3 Generic indexing frameworks
With several emerging application domains being brought into

the relational database market there is an increasing need for cus-
tom indexing data structures for efficient information retrieval. Since
implementing custom indexes in a large codebase is an onerous
task, some have sought a generic index structure that could be cus-
tomized to fit any data domain without any changes in (or knowl-
edge of) database internals.

Several researchers looked into how we can generalize the prop-
erties of various indexes in such a way to create a unified index-
ing infrastructure for ordered data domains. A generic indexing
framework eliminates the burden on the programmer to know the
database internals, requiring only the implementation of a pre-defined
interface which abstracts how the index operates. However, the
generality of such a framework is not a trivial task. For example, B-
trees and R-trees have different properties (large fanout, balanced
by nature) from other space-partitioning trees like quad-trees or kd-
trees (reduced fanout, often unbalanced). As a result, abstracting
the operations on an index must be carefully considered.

An attempt at designing a general indexing framework is the
Generalized Index Search Tree (GiST) [5], which aimed to allow
an easily pluggable index implementation for any new type of data
domain. The paper is mostly theoretical, and the framework only
indicates how to integrate B-trees, R-trees and RD-trees, while
variations like R*-trees, and bulk-loaded R-trees are unsupported,
as are other space-partitioning trees. Aref and Ilyas [2] designed
the SP-GiST, an extensible database index for supporting space-
partitioning trees, such as quad-trees, kd-trees, tries and their vari-
ants. Unfortunately, the SP-GiST is far from generic as well.

Although generalization is not trivial, due to the variety of emerg-
ing application domains, a generic framework for indexing data
from various origins is worth exploring. PostgreSQL/PostGIS was
one of the early adopters of the GiST as a framework for build-
ing R-trees. It is also one of the only open-source OGC-compliant
DBMS, therefore, we are using it to analyze the performance im-
plications of a generalized indexing framework.

No prior work has looked into the overhead of the GiST or stud-
ied the performance impact of its abstractions. We find that when
designing a generic framework for building indexes for any Big-
Data application domain, the overhead of the abstraction must be
considered, since it can cause a major performance hit.

3. THE GIST FRAMEWORK
The GiST framework aims to provide all the basic search tree

logic, unifying distinct search structures, such as B+-trees, R-trees
or RD-trees. The framework assumes that the canonical image of
a database search tree is a balanced tree with high fanout and a

given minimum fill factor. They also assume that the nature of any
database search tree is that it splits the dataset into partitions, in
such a way that each partition has a categorization criterion that
holds for all the data in the partition. This criterion becomes the
key for the subtree that contains the partition.

The GiST provides a flexible interface that requires the program-
mer to only implement a set of 6 methods that allow the GiST to
behave like any search structure that meets these assumptions. The
methods exposed to the user are as follows:

Consistent: Given an entry in the tree E = (Key, P tr) and a
given search predicate P , it returns false if P ∧Key is guaranteed
unsatisfiable, or true otherwise. This allows for multiple paths to
be searched, if there is overlap between the keys (e.g., R-trees).

Union: Given a set of entries, returns a predicate that holds for
all tuples stored below them. This function is used for splitting the
data, such that a criterion holds within each partition.

Compress: Given an entry E = (Key, P tr) returns an entry
(π, P tr), where π is a compressed representation of Key. For R-
trees, the compressed representation is the MBR.

Decompress: Returns the uncompressed version of an entry. For
R-trees, this is the identity function.

Penalty: This method determines a domain-specific penalty for
inserting an entry E1 into the subtree rooted at another entry E2.
This is used in the split and insertion algorithms.

PickSplit: Given a set S of M + 1 entries, this methods splits
this set into two sets of entries, S1 and S2, where each of them has
at least size kM (ensuring the minimum fill factor).

Using solely these methods, the framework implements all the
search tree operations, such as insert, search and delete. Therefore,
the framework should be able to, in theory, simulate any search
tree, as long as the methods are implemented for the specific data
domain. Unfortunately, the GiST is restrictive in assuming a tra-
ditional insertion-based construction of a search tree. Due to the
reinsertion mechanism, R*-trees are not supported, nor are bulk-
loading methods because of their divergent bottom-up approach.

4. PROFILING DBMS PERFORMANCE
To analyze the performance of the GiST framework we use a

PostgreSQL/PostGIS instance, running a spatial join query involv-
ing 6 million polyline records and 6 million polyline records, which
uses a spatial index in the query plan. We profile the query execu-
tion to obtain a breakdown of execution time. We observe that the
filtering step takes 48.41% of the query execution time, while the
refinement step accounts for 47.71% (the remaining time is spent
in query preparation and returning results). These numbers indi-
cate that the much less computationally intensive filtering step is
nonetheless comparable in execution time to the refinement step.

To determine where time is spent in the filtering step, we then
use valgrind’s callgrind tool, and collect profiling information at
the index entry point. We show the breakdown in Figure 1, and
identify the performance bottlenecks:

i) TOAST-ing/De-TOAST-ing. PostgreSQL uses a fixed page size
of 8 kB, and does not allow tuples to span multiple pages. There-
fore, PostgreSQL cannot store very large field values directly. Their
solution is to use a technique named TOAST (The Oversized-Attri-
bute Storage Technique), which compresses large field values and/or
breaks them up into multiple physical rows. Since a general index
may store variable-sized entries, and PostgreSQL includes support
for variable length keys, GiST entries are stored in TOAST blocks.
PostgreSQL spends roughly 30% of the time reconstructing (de-
TOAST-ing) data for each index entry, including internal nodes, in
function pg_detoast_datum_slice. This is an unnecessary over-
head, because we do not need to store either MBRs, or the index

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Useful�index�operations

Internal�function�overheads

Abstraction�for�GiST�support

Shortrlived�MemoryContexts

DerTOASTring

Figure 1: PostgreSQL overheads with the GiST spatial index.

pages themselves (which are both fixed size) in TOAST-ed blocks.
ii) Unnecessary memory management. To detoast index entries

PostgreSQL has to allocate short-lived Memory Contexts (memory
containers to manage internal allocated memory) for each detoasted
key, on each traversal of every internal node. The allocation of
Memory Contexts is included in the 30% detoasting overhead, but
their deallocation accounts for another 18% of the filtering step.

iii) Abstraction overhead. PostgreSQL implements R-tree oper-
ations based on the GiST’s 6-method abstraction. However, some
of these methods are not really necessary for all the index struc-
tures supported, which can cause unnecessary function call over-
head. For example, GiST’s Decompress operation is the identity
function for R-trees, and has no effect in the index search, yet must
be implemented to support the framework functionality. The over-
head of this function is 13% of the filter step. Additionally, the way
the abstraction operates restricts some compiler optimizations.

iv) Internal function overheads. Some of the functions imple-
menting the operations described by the GiST account for a con-
siderable overhead. For example, function gistindex_keytest ac-
counts for 25% of the total filtering time, even though its internal
call to box2df_overlaps, which does the actual overlap check for
MBRs, only takes ~3% of the time.

We conclude that 82% of the time spent in the index, is wasted
in unnecessary overheads, either due to internal DBMS implemen-
tation choices, or the GiST abstraction, while only 18% of the time
is spent traversing the tree and checking MBRs for overlap.

5. EVALUATING THE PERFORMANCE GAP
In this section, we evaluate the performance of the GiST frame-

work. We show the performance penalty of the PostgreSQL DBMS,
then test the GiST framework in isolation (stripped out of the DBMS),
comparing it to several raw R-tree algorithms.

In our experiments, we use an Intel Core i7-2600 at 3.40GHz,
8MB cache, and 8GB RAM, running Ubuntu Linux 12.04 LTS, 64-
bit 3.2.0 kernel, and gcc-4.6. We use a PostgreSQL 9.0.7 instance,
with the PostGIS spatial extension. For all experiments, we use the
TIGER dataset [8] for the state of Texas. The largest table contains
roughly 6 million polylines, totalling a size of ~2GB, (including
the spatial index). For the raw R-tree testing and the optimized
GiST, we build the corresponding spatial indexes and then load the

��������	
 �������� �������� �������� �������� ���������

�

��

���

����

�����
�
�
�
�
�
��
�
�
��
��

�
��
�
�
�
�

Figure 2: Comparison of PostgreSQL-based GiST with a
stripped-down optimized GiST outside the DBMS engine. The
Y-axis has logarithmic scale due to the large range of values.

indexes in memory. Since indexes are always considerably smaller
than the data, they are generally memory-resident.

We first compare PostgreSQL to an optimized stripped-down
GiST framework outside of the DBMS engine, followed by a com-
parison of the optimized GiST with several R-tree strategies, on a
common spatial join query. A tradeoff exists in choosing the page
size. Larger pages imply a lower tree height, which means probing
the tree will take less time to get to a leaf. On the other hand, the
linear traversal of the list of entries in internal nodes favors smaller
pages. In our optimized GiST and raw R-trees, we vary the page
size to determine its performance impact. PostgreSQL operates
with a fixed page size of 8kB.

5.1 PostgreSQL vs GiST
To isolate the DBMS implementation-specific overhead, we im-

plement the GiST framework outside of PostgreSQL. We imple-
ment the same NLA insertion-based R-tree algorithm that Post-
greSQL uses for its GiST-based R-tree. We observe that in the
absence of DBMS-specific abstractions or design choices (e.g., un-
necessary de-TOAST-ing operations, transient Memory Context-
related overheads, and other DBMS internal overheads), the stripped-
down GiST-based R-tree performs much better than its PostgreSQL
counterpart, as shown in Figure 2. The filtering step of a large spa-
tial join on two relations of 6 million polylines each, finishes in
61.6 seconds for the stripped-down GiST, compared to almost 20
minutes for a PostgreSQL instance, amounting to a ~20x perfor-
mance improvement, at the same 8K page size. The performance
improvement of our flexible GiST implementation grows to 65x if
we reduce the page size to 1kB. We observe that flexibility in se-
lecting the page size to allow the index to be tuned for particular
workloads would be desirable, since different queries may achieve
their best performance at different page sizes. Unfortunately, Post-
greSQL internally uses a fixed page size for operating with tables
and indexes in a unified way, and does not allow for this flexibility.

5.2 GiST overheads over raw R-trees
In this section, we analyze the performance of raw R-tree im-

plementations to determine the performance penalty of the GiST
abstraction. We compare several strategies for R-trees, including
bulk-loaded (Hilbert and STR), insertion-based (quadratic and NLA),
and finally the optimized GiST which uses NLA under the hood.
We show in figure 3 that when building the tree, the bulk-loading
strategies are best, with NLA performing similarly at lower page
sizes. We observe that bulk-loading algorithms are impacted less
by the page size compared to insertion-based ones. The GiST,
although using NLA under the hood, experiences some overhead

compared to the raw NLA, because of the extra abstraction.

���� ���� ���� ���� �����

�

	

��

�	

��

�	

��

�	

��

�	

	�

�����

���

���

����

���������

���� ��!� "#$

%
&
�

�
�

��
'

(
 �
�)

�
 "

�
�

�
$

Figure 3: Index build time for GiST vs. raw R-tree algorithms.

We first examine the index build time, since one of the defining
characteristics of BigData is its "velocity" (i.e., the rate at which
new data is being generated); for high-velocity applications the
time to build the index is important. In many spatial cases (e.g.,
maps, land information), spatial data is not frequently updated,
so bulk-loaders have a clear edge because they have all the infor-
mation up-front and output better R-trees with minimized overlap.
However, in the case of frequently updated spatial data (coordinates
from GPS devices or smartphones, etc.), the case for bulk-loading
becomes less obvious. While we have not evaluated such cases,
we note that the initial index construction is fast with bulk-loading
(e.g., Hilbert bulk-loading is over 3x faster than the NLA insertion-
based strategy used internally by Postgres at the 8k page size). As
new data arrives, the index can be updated using insertion-based
strategies. Should the index become sub-optimal over time, there
is a minimal performance cost for periodically recreating the index
using bulk-loading.

���� ���� ���� ���� �����

�

��

��

��

��

	�

��

�

��

��

������

���

���

����

���������

�� �!��"�!#$%

&
'
�
�
�
��
(
)
!�
�*
�
!#
�
�
�
%

Figure 4: Spatial filtering for raw R-tree algorithms vs GiST.
The build strategy has a big impact on the performance of the

R-tree for spatial filtering. Figure 4 shows the performance of
the raw R-tree strategies and GiST on a full join filtering between
two 6 million polyline relations. Bulk-loaded R-trees, such as the
STR and Hilbert strategies outperform the insertion-based strate-
gies by a wide margin. The GiST is outperformed by 4.5-6x by the
bulk-loaders (which are not supported in GiST, as previously men-
tioned), on all page sizes. Furthermore, the GiST is 1.5-2x slower
for the spatial join than the raw NLA it is based on. The GiST al-
gorithm is even outperformed by the Quadratic strategy, due to the
overhead of searches, even though the R-tree that results from the
Quadratic strategy is much worse in terms of overlap.

5.3 Discussion
We observe that the generality of the GiST index compared to a

custom solution comes at a high performance price. The reason is
that GiST abstractions are restrictive, hindering (i) dedicated index
optimizations, (ii) implementation of better index variants, and (iii)
omission of unnecessary functionality. Although the custom index
implementations have a performance advantage in isolation, we do
not advocate such stand-alone solutions. There are advantages to
the index being deeply-integrated into the database engine, in that a
smart cost-based query optimizer can leverage the available indexes
to determine efficient plans for query execution.

The lesson is that, in designing a better indexing framework for
any BigData domain, we need to keep abstractions simple and de-
coupled from index functionality. A generic index interface within
the database engine should describe how an index operates at a
high-level, drawing the abstraction at the level of index operations
(e.g., index a piece of data, retrieve an identifier for it, etc.), rather
than how it should do them (e.g., the 6 methods of the GiST, with
their restrictive assumptions on index properties).

The second observation we made is that although flexibility should
be a first-class citizen when designing a new framework, some-
times restrictions can help avoid poor implementation decisions.
For example, variable-length index entries may be necessary in
some cases, but for the most part the entry reconstruction over-
head is not worth it. While it is acceptable for a variable-size table
field to be reconstructed when needed (presumably only a small
portion of the data is retrieved anyway, if the associated index is ef-
ficient), an index on such data should be fast and cannot afford that
cost. Therefore, indexing variable-sized data should be done using
a compressed representation of it (e.g., a prefix for variable-length
strings, an MBR for geometries, etc.).

Given the multitude of BigData application domains that can
benefit from efficient indexing to prune the search space, exposing
the tradeoff between generality and performance is an important
lesson to any future designs of indexing frameworks for large vol-
umes of data. We plan to use our findings to re-think such a general
framework with less assumptions on what the structure of the index
is, or how it operates, and only impose beneficial restrictions.

As future work, we plan to profile different types of queries
which make use of a spatial index, as well as spatial datasets that
have different properties and data distributions.

6. CONCLUSION AND FUTURE WORK
Spatial indexing plays a major role in fast retrieval of useful in-

formation from BigData, which means that an efficient index de-
sign is paramount. The variety of emerging spatial BigData appli-
cations are calling for new and improved indexing structures, which
are often difficult to integrate in a large and rigid DBMS engine
codebase. As a result, while a general indexing framework is desir-
able, the abstractions involved may cause considerable slowdown,
if the design does not consider performance.

We studied the generality-performance tradeoff with general in-
dexing schemes, such as the GiST. To identify the performance
penalty imposed by the GiST framework, we analyzed PostgreSQL
and showed where time is spent in a large-scale spatial query that
uses spatial indexes. The GiST framework, as implemented in Post-
greSQL/PostGIS, performs poorly for filtering records through the
index. We implemented an optimized GiST framework outside of
the DBMS, to show that even when tested in isolation, the GiST
adds a 1.5-2x overhead over insertion-based R-tree strategies, and
4.5-6x overhead over bulk-loaded R-trees, at several page sizes.

We empirically showed that when designing a generic frame-

work for indexing, drawing the abstraction line in the wrong place
can cause a significant performance penalty, while also restricting
the types of indexable data domains. As future work, we plan to
isolate basic characteristics of spatial (and non-spatial) indexes and
to implement a framework that makes no assumptions on the data
or index properties, or the way the index should operate. Our aim
is to provide index generality with minimal performance impact.

7. REFERENCES
[1] C.-H. Ang and T. C. Tan. New linear node splitting algorithm

for R-trees. In SSD, pages 339–349, 1997.
[2] W. G. Aref and I. F. Ilyas. SP-GiST: An extensible database

index for supporting space partitioning trees. J. Intell. Inf.
Syst., (2-3):215–240, 2001.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. In SIGMOD, pages 322–331, 1990.

[4] A. Guttman. R-Trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[5] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized
search trees for database system. In VLDB, pages 562–573,
1995.

[6] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved
R-tree using fractals. In VLDB, pages 500–509, 1994.

[7] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A
simple and efficient algorithm for R-tree packing. Technical
report, 1997.

[8] TIGER R©. http://www.census.gov/geo/www/tiger.

