
Surveying the Landscape:
An In-Depth Analysis of Spatial Database Workloads

Bogdan Simion
Dept. of Computer Science

University of Toronto
bogdan@cs.toronto.edu

Suprio Ray
Dept. of Computer Science

University of Toronto
suprio@cs.toronto.edu

Angela Demke Brown
Dept. of Computer Science

University of Toronto
demke@cs.toronto.edu

ABSTRACT
Spatial databases are increasingly important for a wide variety of
real-world applications, such as land surveying, urban planning,
cartography and location-based services. However, spatial database
workload properties are not well-understood. For example, it is
unknown to what degree one spatial application resembles another
in terms of resource demand, or how the demand will change as
more concurrent queries (i.e., more users) are added. We show that
spatial workloads have a different CPU execution profile than well-
studied decision support workloads, as represented by TPC-H.

We present a framework to automatically classify spatial queries
and characterize spatial workload mixes. We first analyze the re-
source consumption (i.e., computation and I/O) of a representative
set of spatial queries, which are then classified into five distinct
categories. Next, we create five homogeneous spatial workloads,
each composed of queries from one of these classes. We then
vary database-specific parameters (e.g., the buffer pool size) and
workload specific parameters (e.g., the query mix), to characterize
a workload in terms of CPU utilization and I/O activity trends.

We study workloads simulating real-world spatial database ap-
plications and show how our framework can classify them and pre-
dict resource utilization trends under various settings. This can pro-
vide clues to the database administrator regarding which resources
are heavily contended and can guide resource upgrades. We further
validate our approach by applying it to a much larger dataset, and
to a second DBMS.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS; H.3.4
[Systems and Software]: Performance evaluation

General Terms
Performance, Measurement

Keywords
Query classification, workload characterization, architectural stall
breakdown, PostGIS, Informix

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ACM SIGSPATIAL GIS ’12, November 6-9, 2012.
Redondo Beach, CA, USA
Copyright c© 2012 ACM ISBN 978-1-4503-1691-0/12/11 ...$15.00.

1. INTRODUCTION
Spatial database workloads are increasingly important, thanks

to the advent of popular geospatial Web services such as Google
Maps, in-vehicle GPS navigation systems, and a host of accompa-
nying location-based services. Other important geospatial applica-
tions include city planning, land surveys and environment assess-
ments. Most relational database systems now offer spatial features.

As uses of spatial databases become more widespread, there is a
growing need to analyze and understand the characteristics of dif-
ferent spatial applications. The characterization of database work-
loads is pivotal in analyzing performance issues, detecting opti-
mization opportunities and determining how well the system will
scale as data volume and request rate increases. Workload charac-
terization can also enable automatic tuning of databases, thereby
reducing the cost and complexity of database management [25].

Workload characterization is the quantitative description of a
workload with the objective of obtaining a model that encapsulates
its essential features and dynamic behavior [5]. Often, such work-
load analysis is conducted informally by the Database Adminis-
trators (DBAs), who study query plans and try various ad hoc so-
lutions to improve the performance of a query (e.g., by rewriting
it or by tuning various system parameters on a trial-and-error ba-
sis). This reliance on DBA expertise is costly, and does not easily
translate to new situations. Although several research projects have
studied how to characterize database workloads [10] [11] [12], they
have mainly focused on TPC [23] workloads such as OLTP (On-
line Transaction Processing) and DSS (Decision Support System).

To date, there has been no such characterization of spatial database
workloads, making it difficult to answer even relatively simple ques-
tions. For instance, to what extent does one spatial application re-
semble another in terms of its resource demand? What optimiza-
tions or hardware upgrades will be most beneficial for a given appli-
cation? To address such questions, we “survey” the spatial query
execution landscape1. We present a framework to automatically
classify spatial queries by the nature of their resource consumption
(computationally intensive, data intensive, mixed, low resource uti-
lization etc.) and characterize spatial workload mixes. Based on
a series of factors, our framework can provide clues to the users
(or DBAs) in a reactive manner, to offer a better understanding of
which resources are heavily utilized. Furthermore, we analyze how
this resource pressure changes with parameters such as the buffer
pool size and query density in the workload mix.

Our goal is to identify the inherent resource demands of the
queries that make up a workload, enabling the prediction of per-
formance trends as hardware and workload intensity changes. We
aim to minimize the number of measurements that are needed to

1We draw an analogy to land surveying, which uses measurements
to establish the relative position of physical features on the earth.

376

characterize a new target workload. Our contributions are:

1. We demonstrate that spatial queries differ from previously ana-
lyzed decision support workloads (as represented by TPC-H), in
terms of their low-level CPU characteristics such as instruction
and data cache misses and branch mispredictions.

2. We analyze the resource utilization of spatial queries and deter-
mine their nature in terms of the computation and data accesses
they perform (i.e., compute-intensive, data-intensive, mixed, low-
resource utilization etc.). We show that queries can be classified
into five distinct categories.

3. We extend the Jackpine spatial database benchmark [19] with a
mechanism to create custom concurrent spatial workloads. We
use this to construct five custom workloads, each composed
of multiple concurrent queries drawn from one of the query
classes, and characterize them by varying parameters such as
the buffer pool size and the query density. We show how each
class of workload reacts to these changes.

4. We show how the query classification and the characterizations
of known homogeneous workloads can be used to classify new
workloads and predict their behavior under varying conditions.
We demonstrate this on a set of realistic applications simulated
in the Jackpine macrobenchmark suite.

The rest of the paper is organized as follows. Section 2 presents
background on spatial databases and the benchmarks that we use.
Next, Section 3 explores the CPU and I/O behavior of spatial queries
to motivate our framework for query classification and spatial work-
load characterization, which is presented in Section 4. We demon-
strate the use of this framework, showing how it can predict trends
in previously unseen workloads, in Section 5. Using a second
DBMS and a larger dataset, we validate our methodology in Sec-
tion 6. Related work and conclusions are in Sections 7 and 8.

2. BACKGROUND ON METHODOLOGY
In this section, we present some background on spatial databases

and testing considerations that influence our methodology.
There are a wide variety of geospatial databases, ranging from

open-source projects such as MySQL and PostGIS (the spatial ex-
tension to PostgreSQL) to commercial products such as Oracle
Spatial, ArcGIS and Informix. These databases contain built-in
support for spatial data types (e.g., point, line, polygon) and spa-
tial operations (e.g., distance, intersects, contains, etc.) that can
be performed on the data shapes. The Open Geospatial Consor-
tium (OGC) [17] recently standardized the set of spatial operations
that should be provided in any geospatial database, however many
products are not yet OGC-compliant. For example, MySQL lacks
support for spatial operations like ST_Distance and ST_Dwithin.

Spatial query processing, which is a two-step process comprised
of filtering and refinement stages, also differs across spatial databases.
In the filtering step, the records are filtered based on the minimum
bounding rectangles (MBRs) of the data shapes, to narrow down
the possible matches to a much smaller candidate result set. In
the refinement step, the records in the candidate result set are pro-
cessed to determine which shapes satisfy the spatial criteria. Most
databases comply with this two-step evaluation. However, some
(e.g. MySQL) only perform the filtering stage, which can lead to
many false positives in the final result set.

For our purposes, we wish to experiment with an implementation
that is OGC-compliant, performs both stages of the spatial query
processing, and is open source to allow us to investigate the causes
for the behavior we observe. These requirements lead us to select
PostgreSQL with the PostGIS extension as our target database.

In our analysis we use read-only workloads. From our expe-
rience with spatial databases, we observed that many real-world
spatial applications involve read-mostly workloads and updates are
very infrequent. For example, datasets representing cartographic
maps, land ownership information, and flood insurance rate maps
are rarely updated but are heavily queried. Although certain appli-
cations such as those involving spatio-temporal workloads do in-
volve frequent updates, our current analysis has not addressed these
scenarios. Extending the workload characterization to update-heavy
applications is an important avenue for future work.

For test queries and datasets, we use the open-source Jackpine
spatial database benchmark [19]. Jackpine provides comprehen-
sive coverage of common spatial operators and several representa-
tive spatial application scenarios. In its initial version, Jackpine did
not support multiple concurrent scenarios of different types, so we
modified it to add support for concurrent heterogeneous query exe-
cution. We use this implementation to drive our spatial workloads.
Jackpine uses the TIGER [22] dataset for the state of Texas and a
few additional datasets corresponding to Travis County and the city
of Austin [7]. These datasets have a variety of spatial features. The
cardinality of the largest table is roughly 6 million records (requir-
ing 1.7GB of storage for data and 400MB for spatial index) con-
taining line shapes representing roads and rivers. We also added an
additional copy of each data table to artificially inflate the spatial
dataset size. The total dataset size is slightly under 9GB, including
data tables and indices.

3. SPATIAL DATABASE RESOURCE USAGE
Spatial and non-spatial databases use several system resources

during query execution, such as the CPU (for computation), and
the disk (for retrieving data records). Another common trait is the
impact of buffer pool size on database performance, since obvi-
ously more cache means that more data can fit into memory and
more expensive disk accesses can be avoided.

There are, however, key differences that distinguish spatial and
non-spatial databases. First, spatial queries must evaluate spatial
relationships between shapes, involving complex geometric com-
putations that can saturate the CPU for a long time. Second, geo-
metric shapes do not have a fixed length, making the storage of spa-
tial data more complicated. For example, the polygon for Maine is
much larger than the one for Wyoming, which is a simple rectangle.
Thus, spatial data must be stored in variable-length fields, which
creates problems with record alignment. PostgreSQL’s solution is
to store large shapes (such as lines and polygons) as TOAST2 data
blocks, which are kept separate from the other fields in the main
table. A TOAST index allows fast access to TOAST data blocks.

We first examine how these differences affect spatial query pro-
cessing in terms of the CPU time breakdown for an in-memory
dataset, before considering the effect of I/O.

3.1 Comparison of architecture-level events
Spatial applications and their associated data and queries involve

a different type of processing, which imposes a different stress on
system resources. An architectural breakdown of the CPU process-
ing time illustrates these differences for two standard sets of spatial
and non-spatial analytical queries.

We compare the set of microbenchmark queries from Jackpine,
and those from the non-spatial TPC-H benchmark, on the same ma-
chine. Both benchmarks include a large set of read-only queries, in-
volving a variety of complex analytical operations. In both bench-
marks, there are long-running and short-running queries, and both

2TOAST stands for “The Oversized-Attribute Storage Technique”

377

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
A

V
G

%
 e

x
e

c
u

ti
o

n
 t

im
e

Spatial queries

mispred

L2

dTLB

L1D

iTLB

L1I

(a) Spatial benchmark

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
6

1
7

1
8

1
9

2
0

2
1

2
2

A
V

G

%
 e

x
e

c
u

ti
o

n
 t

im
e

TPC-H queries

mispred

L2

dTLB

L1D

iTLB

L1I

(b) TPC-H benchmark

Figure 1: Architectural breakdown for spatial and non-spatial workloads

involve complex query plans, with sequential scans, index scans,
joins and other typical relational operators. Both test datasets are
roughly equal in size, with multiple large data tables and indexes.

To eliminate I/O effects and focus on the CPU, we ensure that
data is entirely memory resident by warming up main memory and
caches with multiple runs for each query. Additionally, to deter-
mine the confidence intervals we repeated the experiments several
times and found that the average variation is less than 4%.

To show the dominant components of the CPU processing time
during query execution, we use an approach similar to Ailamaki et
al. [1], who showed that for some database workloads CPU stalls
are a big component of execution time. We measure several events
that can cause CPU stalls: L1 data and L1 instruction cache misses,
L2 cache misses, data and instruction TLB misses, and branch mis-
predictions. We then use a fixed cost estimate for each event to give
a breakdown in terms of execution time. This is an approximation,
since several stall events may overlap in time.

These events can be obtained using hardware performance coun-
ters available in most modern CPUs. The performance analysis
tool "perf", included in Linux kernels, can monitor and record these
counters. It provides a detailed report on the number of occurrences
for each event. The cache and TLB latencies for our hardware are
estimated using the Calibrator tool [4]. Branch misprediction la-
tencies are estimated based on our processor specifications.

After running the spatial queries from Jackpine and non-spatial
queries from TPC-H through the PostgreSQL engine, we show a
side-by-side comparison in Figure 1. Since the queries in Jackpine
had long descriptions, we ordered them alphabetically and num-
bered them for easy reference in the figures. We also omitted query
15 from TPC-H since it involves creating a view which is not typi-
cal of other TPC-H and spatial queries. The final bar in each graph
shows the average contribution to execution time for each of the
features analyzed, for both spatial and TPC-H queries. We note
several interesting differences.

First, spatial queries incur fewer cache misses on average than
their non-spatial counterparts. However, spatial queries spend more
than twice the execution time (3.6%) in L1 instruction cache misses
compared to TPC-H queries (1.5%). A few spatial queries (3, 8
and 25) involve a materialization with sequential scan on the outer
relation of the join, which causes a much higher L1 instruction miss
rate than others. Even if we exclude the 3 outliers, spatial queries
still spend roughly 1.6 times more execution time in L1 instruction
misses than TPC-H queries. As for L1 data cache misses, they
account for less than 7% of execution time on average for spatial
queries, compared to a whopping 19% for TPC-H queries. The
L2 misses are also higher on average for TPC-H queries (roughly
5% of execution time) compared to spatial queries (less than 1% of

execution time).
Second, spatial queries incur a slightly lower number of data and

instruction TLB misses than non-spatial ones (2.4% of execution
time on average for spatial queries, compared to 3% for TPC-H).

Third, spatial queries incur a lot more branch mispredictions,
which can be very expensive since fetching the wrong instructions
pollutes the caches with unnecessary instructions and causes stalls
due to pipeline flushes. Branch mispredictions account for 8% of
the execution time on average for spatial queries, compared to ap-
proximately 4.5% for TPC-H queries.

Overall, spatial queries are a lot more “CPU-friendly”: a greater
portion of execution time is spent performing useful computations,
rather than stalling. Consequently, we argue that spatial workloads
are a beast of a different nature, and thus warrant special attention.

3.2 Characterization of I/O behavior
At the other end of the spectrum from the CPU, database query

processing requires I/O. Thus, we examined the I/O behavior, as
seen at the disk level, during spatial query processing. To capture
the complete I/O behavior we only use cold runs so that the data is
not already cached in memory.

The Jackpine microbenchmark includes spatial join and spatial
analysis functions. The spatial join queries (all pair join and join
with a given spatial object) involve accessing multiple on-disk files,
such as the corresponding data files, index files, the TOAST data
files and TOAST index files. Due to the interleaved accesses to
these files, the disk throughput of these queries resembles that of
a random access pattern. The spatial analysis functions operate on
one table and require accessing the corresponding data file, TOAST
data file and TOAST index file only. These queries achieved disk
throughput that resembles sequential access. This I/O behavior is
expected, given the organization of the database files and the char-
acteristics of disk drives.

3.3 Combined resource utilization
We now consider the combined demand for CPU and disk re-

sources, as the amount of memory available to the database buffer
pool varies. We observed that spatial queries can vary widely in
terms of resource utilization. Some queries either do not touch
many disk blocks or manage to cache blocks relatively quickly, af-
ter which most of the time is spent by the CPU processing complex
geometries as part of the refinement stage. At the other end of
the spectrum, we have queries that touch many data, index and/or
TOAST blocks. In these cases, the main culprit for high query la-
tency is the disk, because the slow disk accesses render the compu-
tation time almost negligible. Even for these data-intensive queries,
if most of the necessary disk blocks can be cached, then CPU is

378

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

R
e
s
o

u
rc

e
 u

ti
li

z
a
ti

o
n

cpu

iowait

Figure 2: LineCrossesArea w/ 64MB buffer pool is I/O-bound

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (s)

R
e
s
o

u
rc

e
 u

ti
li

z
a
ti

o
n

cpu

iowait

Figure 3: LineCrossesArea w/ 1GB buffer pool is CPU-bound

again the main resource used. Thus, such a query can be found at
either end of the spectrum, depending on the buffer pool size.

To illustrate the impact of the buffer pool size on the execution
of a spatial query, we present an example of a spatial query running
at a low buffer pool setting (64MB) and a high buffer pool setting
(1024MB) in Figures 2 and 3, respectively. The query is LineCross-
esArea, a Jackpine scenario involving an all-pair join between two
spatial tables, which finds all the pairs of lines (e.g., rivers, roads)
and polygons (e.g. parks, lakes) that cross each other.

At a low buffer pool setting, Figure 2 shows that disk I/O takes up
most of the execution time, even for warm runs, making the query
I/O-bound. By increasing the buffer pool to a size where all the data
fits, we observe a completely different behavior for warm runs, as
shown in Figure 3. When the data is all in memory, the complex
geometric computation takes up most of the execution time. Natu-
rally, this also implies a reduction in query execution time.

Our spatial query analysis aims to incorporate all the information
about I/O wait, CPU load and buffer pool size into a classification
model for spatial queries, which can serve to create spatial work-
loads with predictable characteristics. We use system measurement
tools that calculate the CPU utilization and the I/O wait time during
the execution of a given spatial query. Since we aim to expose the
inherent resource demands of the queries executed by the database,
we must guard against interference from the operating system (OS)
or other applications. OS interference can make it hard to observe
the effect of changing the buffer pool size, since blocks can be pro-
vided from the OS cache rather than from disk. Many OSs provide
an option for direct I/O, which bypasses the OS caches. However,
PostgreSQL does not make use of this facility. To ensure that disk
access performance is not enhanced by OS caches, we periodically
clear the OS caches in all our experiments. Application interference
can be avoided by running the database on a dedicated machine.

4. QUERY CLASSIFICATION AND
WORKLOAD CHARACTERIZATION

Our framework for spatial query classification and workload char-
acterization is based on resource utilization and various database-
specific and workload-specific parameters. Stage I of our analysis
classifies spatial queries based on the maximum stress they impose

on CPU and disk resources, respectively. Next, we build spatial
workloads fitting certain characteristics of their component queries,
and show how these spatial workloads can be characterized in terms
of their resource utilization at various settings.

4.1 Stage I: Spatial query classification
Spatial query resource utilization is very complex and depends

on many factors, such as the spatial operations performed (com-
plex geometric computations translate into heavy CPU usage), the
database operators involved (e.g., complex joins, sequential scans,
etc.) and query planner optimizations (e.g., whether spatial indexes
can be used), and the table size (smaller data involves less disk ac-
tivity). These factors are not easy to quantify and can introduce a
multitude of combinations that are hard to cover exhaustively.

To classify spatial queries automatically, we need a measure that
captures the query nature (compute intensive, data intensive, mixed
resource, or low resource utilization), without analyzing all these
factors. Essentially, we want a black-box method that can accu-
rately determine the nature of the query in a particular setting (a
known spatial DBMS and a known dataset), without any internal
knowledge such as which spatial functions or database operators
the query is using, what tables it is operating on, or what the query
plan looks like. Our insight is that by using extreme buffer pool
size configurations for our test database, we can extract information
about the inherent query nature without analyzing the multitude of
factors that contribute to the observed behavior. Although Kutner
et al. [15] warn against using extreme endpoints for 2K experimen-
tal designs because the system’s performance at the midpoint may
be nothing like its performance at either extreme, the miss-ratio
curve (MRC) corresponding to a database query is monotonically
decreasing in the database bufferpool size [21]. Therefore selecting
extreme points is sufficient and accurate.

Our classification model is not purely analytical. We use exper-
iments and measurements to determine where a spatial query fits.
We use the full set of Jackpine microbenchmark queries, which are
representative of most spatial operations and data types. However,
we have extended the dataset with additional copies of the tables,
to increase the pressure on the buffer pool.

We run the test spatial queries using two configurations:
a) BPmin: A configuration with a small buffer pool, which will

not allow full caching of the disk blocks for large tables (resulting
in lots of disk activity), but will allow small tables to be cached
fairly well. In our tests, we use 64MB for BPmin, but this can
be configured based on the dataset table sizes (significantly smaller
than the largest table but able to fit some of the smaller tables).

b) BPmax: A configuration with a large buffer pool, which will
allow a large number of disk blocks (if not all of them) to be cached
in the buffer pool, even for large tables. We use 1GB for BPmax.

For each of these configurations, we record the average CPU load
and average I/O-wait over the duration of the query. We use stan-
dard Linux measurement tools (such as vmstat or sar) that report
for each 1 second sample, the proportion of time spent performing
CPU computations or time spent waiting for I/O. These samples are
then combined to give the overall CPU and I/O-wait measurements,
each ranging between 0 and 100.

Next, we compute the maximum average resource utilization for
both resources in the two buffer pool configurations. As a general
rule, the maximum strain on the CPU will always be at a high buffer
pool configuration, while the maximum strain on the disk is when
the database operates with very little buffer cache. Thus,

MaxCPU = AvgCPUload(BPmax) (1)

and
MaxIO = AvgIOwait(BPmin) (2)

379

0

20

40

60

80

100

0 20 40 60 80 100

IO
 w

ai
t

1. AreaContainsArea 2. AreaDisjointArea
3. AreaEqualsArea 4. AreaOverlapsArea
6. AreaTouchesArea 7. AreaWithinArea
9. BufferPolygon 25. PointEqualsPoint

11. DimensionPolygon 12. DistanceFromPoint
13. EnvelopeLine
14. LargestAreaContainsPoint
19. LineIntersectsLargestArea
24. LongestLine 26. PointIntersectsArea
28. PointWithinArea 30. TotalLength

 5. AreaOverlapsLargestArea
10. ConvexHullPolygon
23. LongestLineIntersectsArea

17. LineCrossesLine 8. BoundingBox
15. LargestArea 29. TotalArea
16. LineCrossesArea 18. LineIntersectsArea
20. LineOverlapsArea 21. LineTouchesArea
22. LineWithinArea 27. PointIntersectsLine

CPU load

Figure 4: Spatial query classification - color coding represents
the 4 query classes

These numbers represent the spatial query nature in terms of
data-intensiveness (if MaxIO is high at BPmin, when disk activ-
ity should be dominant), and computational intensity (if MaxCPU

is high at BPmax, when everything should theoretically fit in mem-
ory). The difference between these two figures represents the vari-
ation between the highest CPU-utilization and the highest I/O ac-
tivity. This is a good indicator if a query has a more computational
nature (e.g, performing complex spatial operations on complex spa-
tial types), or if data fetching activity is predominant.

In Figure 4, we plot the values of MaxCPU and MaxIO for
each query on a two-dimensional scatterplot with the CPU utiliza-
tion on the x-axis and the I/O-wait on the y-axis. Intuitively, the
queries located in the upper left corner of the resource space shown
in Figure 4 are data-intensive, since they have high I/O-wait times
but do not saturate the CPU even at BPmax. Similarly, we can see
that the queries from the lower right corner are compute-intensive,
since the I/O-wait is never a large factor, even at BPmin. The
queries in the upper right corner are of a mixed nature, depending
on the buffer pool size, while the queries close to the lower left
corner utilize few resources (low computation, few data accesses).

From this plot we can see that spatial queries differ widely in
terms of their maximum resource demand, with some being com-
pute intensive while others are inherently data intensive. Based on
these observations, we can determine the query classes by splitting
the resource usage domain using a set of delimiting line segments:

y = x− a (3)

y = x + b (4)

y = −x + c (5)

In our work, we determined empirically that a = b = 40 and c =
120 work well as the thresholds. With these equations, the resource
usage space is divided as shown by the colored regions in Figure 4.
Using equations (3) and (4), we can determine the nature of a given
query point Q(x,y):
i. if x− y >= a%⇒ Query is compute-intensive (red region)
ii. if x− y <= −b%⇒ Query is data-intensive (blue region)
iii. if −b% < x − y < a% ⇒ Query is mixed (orange+purple
regions)

Category iii) is further split using equation (5):
iii.a) if y + x < c%⇒ low resource utilization (orange region)
iii.b) if y + x >= c%⇒ mixed resource usage (purple region)

Mixed usage queries arise either because varying the buffer pool
size migrates the query from the data-intensive end of the spectrum
to the compute-intensive end, or simply because the query is using
both resources in roughly equal proportions.

The visual representation in Figure 4 shows that this approach
groups queries into 4 classes: compute-intensive (class C), data-

0

20

40

60

80

100

0 20 40 60 80 100

CPU load

IO
 w

ai
t

1. AreaContainsArea 2. AreaDisjointArea
3. AreaEqualsArea 4. AreaOverlapsArea
6. AreaTouchesArea 7. AreaWithinArea
9. BufferPolygon 25. PointEqualsPoint

11. DimensionPolygon 12. DistanceFromPoint
13. EnvelopeLine
14. LargestAreaContainsPoint
19. LineIntersectsLargestArea
24. LongestLine 26. PointIntersectsArea
28. PointWithinArea 30. TotalLength

 5. AreaOverlapsLargestArea
10. ConvexHullPolygon
23. LongestLineIntersectsArea

17. LineCrossesLine 8. BoundingBox
15. LargestArea 29. TotalArea
16. LineCrossesArea 18. LineIntersectsArea
20. LineOverlapsArea 21. LineTouchesArea
22. LineWithinArea 27. PointIntersectsLine

(a) BPmin

0

20

40

60

80

100

0 20 40 60 80 100
CPU load

IO
 w

a
it

1. AreaContainsArea 2. AreaDisjointArea
3. AreaEqualsArea 4. AreaOverlapsArea
6. AreaTouchesArea 7. AreaWithinArea
9. BufferPolygon 25. PointEqualsPoint

11. DimensionPolygon 12. DistanceFromPoint
13. EnvelopeLine
14. LargestAreaContainsPoint
19. LineIntersectsLargestArea
24. LongestLine 26. PointIntersectsArea
28. PointWithinArea 30. TotalLength

 5. AreaOverlapsLargestArea
10. ConvexHullPolygon
23. LongestLineIntersectsArea

17. LineCrossesLine 8. BoundingBox
15. LargestArea 29. TotalArea
16. LineCrossesArea 18. LineIntersectsArea
20. LineOverlapsArea 21. LineTouchesArea
22. LineWithinArea 27. PointIntersectsLine

(b) BPmax

Figure 5: Mixed queries migrate from a data-intensive state at
BPmin to a high computation region at BPmax

intensive (class D), mixed resource (class M1) and low resource
utilization (class M2). The legend lists the queries in each category.

Although the use of delimiting line segments works well for this
set of experiments, the empirical choice of thresholds is unsatisfac-
tory. As a result, we use the intuition behind the different segments
to construct a k-means clustering model.

4.1.1 Clustering-based classification model
We implemented a clustering method which places the queries

into 4 clusters (corresponding to the 4 categories mentioned above).
We use a k-means algorithm with 4 centroids and Euclidean dis-
tance measure. The centroids are artificial points in the resource
space, representing the "average location" of a particular cluster.
The 4 centroids are placed initially at (90,10), (10,90), (90,90) and
(10,10), corresponding to compute-intensive tasks, data-intensive
tasks, mixed-resource tasks and low-resource tasks respectively.

The algorithm computes the distances from each point to each
of the centroids, then marks each point as belonging to the cluster
whose centroid is closest. Once the points are grouped into clusters,
the centroids are recomputed by averaging the coordinates for each
of the points in the cluster. The process repeats until the centroids
stabilize (they remain the same after two successive iterations).

The query classes represented by the clusters are identical to the
ones obtained using the delimiting lines, further supporting that we
accurately capture the query nature and produce a correct classifi-
cation. Figure 4 lists the queries contained in each cluster.

4.1.2 Discussion
We observe that mixed resource queries (class M1) come in two

forms. The first type consists of queries that use roughly equal
execution time to perform computations and to fetch data blocks.
Based on our experiments, this type is rare; only one example can
be found in Jackpine, namely the LineCrossesLine query. This sce-
nario was limited to return 5 records, since it was the longest run-
ning query (an all pair join between two 6-million record tables,
representing all the intersections between line shapes such as roads

380

and rivers). When a data-intensive query such as LineCrossesLine
only has to fetch a limited amount of data, the computation be-
comes significant and thus the query is evenly balanced in terms of
computation and time spent accessing data.

The second type consists of queries that are at opposite ends of
the spectrum depending on the buffer pool size. In Figures 5(a)
and 5(b) we illustrate how mixed-nature queries (class M1, marked
with purple triangles in the figures) queries migrate from I/O-bound
at a low buffer pool size to CPU-bound at a high buffer pool size.

It is important to note that the query classification does not tell
us whether a query is I/O-bound or CPU-bound. Instead, the class
gives us insight into how the query will behave in different con-
figurations. Figure 5 shows the behavior at the two extreme buffer
pool configurations, illustrating how the behavior changes for the
different query classes. This figure motivates one additional refine-
ment to our classification. We observe that data-intensive queries
(class D) come in two types. The first type (class D1) is I/O-bound
with a low buffer pool and low-CPU with a high buffer pool, while
the second category (class D2) stays I/O-bound, even with a signif-
icantly large (yet reasonable size) buffer pool. Class D1 contains
queries that cannot saturate the CPU even when all the data fits in
the buffer cache; it accounts for most of the data-intensive queries
from Jackpine. The queries that are included in class D2 are En-
velopeLine, LongestLine and TotalLength.

In summary, the Stage I analysis groups spatial queries into 5
major classes: compute-intensive (class C), data-intensive (classes
D1 and D2), and mixed (classes M1 and M2). The next stage se-
lects queries of a given class to create spatial workloads with a
known homogeneous nature.

4.2 Stage II: Spatial workload
characterization

In the second stage of our framework, our goal is to characterize
spatial workloads as we vary database-specific parameters (most
significantly, the buffer pool size) and workload-specific parame-
ters (e.g., the query density in the workload mix). Given the clas-
sification of all the test queries in Stage I, we aim to determine if
a workload comprised of queries from a given class is CPU-bound,
I/O-bound or a mix of both, in different configurations.

4.2.1 Jackpine workload support
To test and analyze spatial workloads, we extend the Jackpine

benchmark to support fully concurrent heterogeneous query execu-
tion. Jackpine only had limited support for concurrent query execu-
tion. Specifically, it could launch multiple threads within the same
scenario to execute multiple instances of the same query. However,
to provide realistic workloads containing any combination of dis-
tinct spatial queries running concurrently we require more flexible
support for concurrent scenarios.

We use the modified Jackpine benchmark to drive custom work-
loads for the Stage II analysis. Jackpine now launches a workload,
based on a configuration file that contains the descriptions of the
scenarios to be executed concurrently. Each scenario in turn has
its own configuration file, containing the description of the spatial
scenario class, and a set of parameters. One of these parameters
specifies how many instances of that query should be included in
the workload mix. Consequently, a workload can contain multiple
distinct scenarios (corresponding to distinct spatial queries), and
each scenario can have multiple instances of the same query. All of
these queries are run concurrently.

To isolate the performance of the database from that of the bench-
mark driver, we run Jackpine on a separate machine; queries are
issued to the database using JDBC connections.

4.2.2 Workload characterization via resource usage
Our goal is to characterize spatial workloads by varying several

factors that can have a significant impact on the resource usage of
a given workload. As we have seen, one critical factor is the buffer
pool size, which determines whether the data and index blocks
needed by a workload can fit entirely in memory, thus eliminating
expensive disk accesses. Based on the buffer pool size, a workload
can be characterized as either I/O-bound, mixed, or CPU-bound. If
all needed data fits in the buffer pool, we can determine whether
the CPU usage is high or low without the interference of fetching
data from disk. In contrast, some queries perform sequential scans
on large tables which will not fit into even a large buffer pool.

Another important parameter is query density. In generic database
workloads, there are a finite number of tables in a dataset, but a
large number of query types and combinations. This leads us to the
safe assumption that the number of queries in the average workload
mix is much larger than the number of tables used. In turn, this
means that many queries will be accessing the same tables concur-
rently, which would enable sharing of buffer pool pages. Based on
the density of the queries in the workload mix, this sharing effect
can have a significant impact on the workload nature as it attracts
workloads towards the CPU-intensive end of the spectrum. Ba-
sically, workloads that are already CPU-bound will be even more
dominantly CPU-bound, while for I/O-bound workloads the disk
activity dimension will become less predominant.

Because disk accesses are very expensive, some queries are I/O-
bound even though they perform heavy computations. However,
when the query density is high, a large number of I/O-bound queries
will be accessing the same tables and will inevitably share pages in
the buffer pool. The result is a higher hit ratio, which in turn re-
duces the amount of disk accesses. This buffer pool sharing could
result in a CPU-bound workload comprised of individually I/O-
bound queries, given that the CPU-work cycles for each individual
query in the workload cannot be shared.

We design 5 types of workloads corresponding to the query classes
described in Section 4.1. The workloads are homogeneous in the
query class types, but contain a mix of distinct queries. Thus, work-
loads are composed of either C, D1, D2, M1 or M2-class queries.
The buffer pool size and query density are the testing parameters;
by varying them, the workload nature can change dramatically for
D-class and M-class workloads, but not for the C-class, as we will
show. We use 2 buffer pool settings (low/high) corresponding to
BPmin and BPmax configurations. We use 3 query density set-
tings: low, medium and high. With the low setting, the workload
contains a single query of the respective query class. A medium
setting includes a mix of 6 queries, while a high setting contains 30
concurrent queries. To better show the trends, we chose one more
mix (of 12 queries) for the medium setting and two extra mixes (24
and 48 concurrent queries) for the high setting. The basic charac-
terization can be obtained with just the initial 3 mixes, however.

As in Stage I, CPU load and I/O activity measurements are taken
at 1 second intervals and averaged over the execution time of the
workload. The average CPU load and the average I/O-wait rep-
resent the percentage of time executing CPU instructions and the
percentage of time fetching either data or index pages from disk.

We use a visual representation of the resource usage for these
workloads in a two-dimensional space, where the coordinates are
query density (x-axis) and buffer pool size (y-axis). We draw a line
between the low and high buffer pool settings, corresponding to the
size where the miss-ratio curve (MRC) drops to zero buffer pool
misses. This BP-cutoff will occur at different buffer pool sizes for
different queries. We do not determine the actual cutoff, we merely
observe that behavior will be different above and below this line.

381

Low

BP-cutoff

High

Low Medium High

B
u

ff
e

r
p

o
o

l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(a) Class C workload

Low

BP-cutoff

High

Low Medium High

B
u

ff
e

r
p

o
o

l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(b) Class D1 workload

Low

BP-cutoff

High

Low Medium High

B
u

ff
e

r
p

o
o

l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(c) Class D2 workload

Low

BP-cutoff

High

Low Medium High

B
u

ff
e

r
p

o
o

l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(d) Class M1 workload

Low

BP-cutoff

High

Low Medium High

B
u

ff
e

r
p

o
o

l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(e) Class M2 workload

Figure 6: Resource usage maps. Color coding is used for resource usage: CPU computations are shown in shades of red (darker
means more computation), I/O activity is in blue nuances, while mixed is in shades of purple (depending on the mix of CPU and I/O).

The resource utilization is color-coded (similar to heat maps) into
resource usage maps for each of the test workloads.

Figure 6 (a)-(e) shows the resource usage maps for each of the
workload types. Our experiments show that the compute-intensive
class C queries (Figure 6(a)) are CPU-bound regardless of buffer
pool size or query density. This is an expected result, since increas-
ing the buffer pool size and/or query density can only increase the
demand on the CPU. However, for data-intensive and mixed query
classes, the workload categorization gets considerably more com-
plex, as the workloads can turn out to be either I/O-bound, mixed
or even CPU-bound, in different configurations. In the following
text, we use the abbreviation “QD” to refer to query density.

The D1 category is I/O-bound at a (low QD; low BP) configu-
ration, and low CPU usage at a (low QD; high BP) setting. This
shows that each of the queries in this category individually ex-
hibit this behavior, as expected. As query density increases, at a
low BP setting the concurrent queries start sharing pages in the
buffer pool and therefore the workload migrates towards a mixed
resource utilization (for QD=high). With a high BP setting and in-
creasingly higher QD, the workload performs more computation
exerting more pressure on the CPU and (predictably) becoming
CPU-bound. The D2 category exhibits a trend of slowly transition-
ing from I/O-bound towards mixed and CPU-bound as query den-
sity increases. The M1 category is similar to D1, except that hav-
ing more computation speeds up the transition from an I/O bound
to a CPU-bound behavior at a low buffer pool setting and leads
to consistently CPU-bound behavior at a high buffer pool setting.
The M2 category exhibits a low resource utilization behavior for
a low query density, but as the number of queries in the workload
mix increases, the workload behavior changes. By adding more
queries (which use more data tables), the workload first becomes
I/O-bound at a medium QD setting, only to migrate towards CPU-
bound as more queries are added at a high QD setting (with the
number of data tables staying the same). With a high buffer pool
setting, an M2 workload transitions from low-CPU usage to CPU-
bound behavior as QD increases.

As a general observation, once a workload becomes CPU-bound
increasing the query density can only leave the workload CPU-
bound, if the number of data tables in the dataset stays the same.
If each query would operate on its own copy of the data table, the
situation would be different. However, as noted earlier, we make
the reasonable assumption that the number of queries in a spatial
workload far exceeds the number of tables in the dataset.

These resource usage maps provide valuable information on the

behavior of any spatial workload. Database administrators and
database users can use these maps to understand which resources
are heavily utilized and what to expect with changes in the work-
load query density. Given a buffer pool size and the workload mix,
these categories can pinpoint the nature of the workload (CPU-
bound, I/O-bound, mixed etc.). Furthermore, this helps determine
where to focus performance upgrades to deal with increased pres-
sure on a given resource.

5. APPLICATION TO NEW WORKLOADS
To demonstrate that our characterization provides useful guid-

ance on the behavior of a target workload, we test realistic spatial
workloads drawn from the Jackpine macrobenchmark scenarios.
We show that the classifications obtained by our framework ac-
curately predict the behavior of these workloads at different buffer
pool size and query density settings. Further, we show how this
characterization can serve to guide resource upgrades.

5.1 Experimental setup
For the query classification and workload characterization stages,

we use an Intel Core 2 Duo E7500 at 2.93GHz, 3MB cache, and
4GB RAM, running Ubuntu Linux 10.04, 64-bit with 2.6.26 kernel
version, and PostgreSQL 8.4.4 with PostGIS spatial extension. All
the results in the previous sections were obtained on this machine.

When running on a machine with multiple cores, Linux measure-
ment tools average out the CPU load and I/O wait time among the
cores, whether active or not. To obtain correct measurements, we
disabled one core when running the workloads. On Linux, this can
be done dynamically by writing “0” to a system file (e.g. “echo
0 > /sys/devices/system/cpu/cpu1/online”).

5.2 Classifying realistic workloads
To test the accuracy of our categorization framework on real-

world spatial applications, we use all but one of the Jackpine work-
loads from the macrobenchmark suite (Map Browsing, Land Infor-
mation Management, Flood Risk Analysis, Toxic Spill and Reverse
Geocoding). We omitted the Geocoding scenario, since it does not
use spatial shapes, just latitude-longitude coordinates.

In Stage I, each macrobenchmark scenario is classified into data-
intensive, compute-intensive, or mixed (as well as the appropri-
ate subcategories). In Stage II, we select two interesting scenarios
in terms of resource usage (MapBrowsing and Land Information
Management, which are also among the most widely-used spatial
applications) to demonstrate that the resource usage maps for their

382

0

20

40

60

80

100

0 20 40 60 80 100
CPU load

IO
w

ai
t

Map Browsing

Land Info Management

Flood Risk

Toxic Spill

Reverse Geocoding

Figure 7: Classifying realistic application workloads.

respective classes can be used to accurately predict the resource-
boundness of the workloads in a wide range of configurations.

The Map Browsing and Land Information Management scenar-
ios are described in detail in [19]. For completeness, we provide a
short description for each of them here.

Map Browsing. Searching for locations of interest by keywords
and viewing the results on a map is a popular use of online map-
ping applications. For example, a tourist visiting a new city may
look for nearby airport, hotels, restaurants, and popular sites. The
Map Browsing scenario models such use cases by first performing
a search query for a place of interest. Then a series of 5 queries
are executed that fetch the spatial objects inside a bounding box
centered around the found location of interest. The sequence of
searching for a nearby place of interest and 5 map display queries
are repeated a number of times to reflect typical browsing behavior.

Land Information Management. Land information management
is vital to the maintenance of property ownership and the enforce-
ment of land use regulations. Digital land information management
systems, where parcels of property are stored as shapes in a geospa-
tial database, are a valuable tool to many local governments. The
land information data set used in Jackpine was obtained from the
City of Austin GIS data sets. Several land use related queries are
executed in sequence during the scenario.

We first show how the Stage I process can be used to classify the
spatial workloads into one of the 5 categories. Each of the macro
scenarios are individually run and classified using the delimiting
line segments (clustering with the other queries yields the same
classification). The results are shown in Figure 7. Map Brows-
ing has a highly data-intensive nature, belonging in the D2 class,
whereas Land Information Management is of a mixed nature, fitting
into class M1. The Flood Risk analysis is CPU-bound (C-class) and
thus is not as interesting to study since the resource usage map is
CPU-bound at all settings. Toxic Spill is similar to Map Browsing
and fits into the D2 category, while Reverse Geocoding matches the
D1 class. Note that only two measurements are needed to obtain the
classification for a given workload.

Based on this classification, the resource maps from Figure 6 in
Section 4.2 can be applied to predict how these workloads change at
different settings. Due to space constraints, we selected for analysis
the Map Browsing and Land Information Management scenarios,
as they are representative of the most interesting query classes (D2
and M1), which provide a wide range of resource usage variation.

To demonstrate that the resource usage maps for the correspond-
ing classes (obtained with the homogeneous workloads) can accu-
rately predict workload behavior, we pass the workloads through
Stage II and measure resource usage at various buffer pool and
query density settings. The resulting resource usage maps are plot-
ted in Figures 8(a) and 8(b). As can be seen from these maps, the

Map Browsing workload clearly matches the behavior of the D2
class at different buffer pool sizes and query densities, while Land
Information Management matches the behavior of the M1 class.

We conclude that employing the resource usage maps for work-
loads of a particular nature (i.e., class) can accurately predict their
behavior in various configurations.

Note that our goal is not to predict exact performance under a
given configuration, but rather to capture the resource usage trend
of an application as database-specific and workload-specific param-
eters change. Consequently, the buffer pool size and query den-
sity settings must not be taken as absolute values, but rather as
a means to capture the workload behavior trend. We argue that
the methodology behind our framework creates resource utilization
maps which are widely-applicable in this respect. For example,
in production databases, the dataset will probably be much larger
than our dataset, but so will the buffer pool size settings. Even if
the dataset and buffer pool size increases are not proportional, the
performance trend will still be captured in the resource utilization
maps. Our ultimate goal is to provide clues to DBAs in capac-
ity planning decisions, by using these maps as a predictor of how
workload changes can impact the performance trends.

6. VARYING DBMS AND DATASET
To validate the classification methodology, we apply it to a sec-

ond database, as well as to a much larger dataset.

6.1 Informix
Different DBMSs implement spatial processing in different ways,

and not all are OGC-compliant. For example, MySQL does not per-
form the refinement step. Other DBMSs use different implementa-
tions of the spatial functions and/or perform various optimizations
for the relational operators (e.g., sequential and index scans, joins
etc). Consequently, the results of our framework on one DBMS
cannot be blindly applied across all DBMSs. The framework may
place the same query executed on different DBMSs in different cat-
egories, simply because different implementations of spatial oper-
ators across DBMSs, as well varying database internals (such as
buffer pool management and query optimizations) may entail dif-
ferent resource utilization.

However, an important aspect of our analysis is to determine if
the query classification method can be used for any DBMS. Thus,
we perform a validation with a different DBMS, by applying the
same strategy to Informix, a closed-source commercial DBMS. In
figure 9 we show the resource usage of the same set of spatial
queries, executed through the Informix engine and its spatial ex-
tension. Since Informix does not support the ST_Buffer spatial
function, we exclude one query involving this functionality.

Overall, the classification is quite similar to PostgreSQL in terms
of the resource usage of different queries, with the exception that
Informix seems to exhibit better I/O performance for some of the
queries, such as TotalLength, TotalArea, LongestLine, LargestArea
and LineCrossesLine. As a result, these queries get classified in a
different category than for PostgreSQL.

Since Informix is closed-source, we could not confirm with the
source code the exact reason for better I/O performance, but we
did notice that all the aforementioned queries include a sequential
scan of a large table (edges_merge and areawater_merge) as part
of the query plan. As a result, we speculate that Informix is better
optimized for sequential scans of large data tables. Additionally,
since Informix stores data on disk as contiguous large blocks called
“dbspaces” and “sbspaces” (for spatial data), we speculate that the
prefetcher may also contribute to the better I/O performance.

Even without having information about the query plans, inter-

383

Low

BP-cutoff

High

Low Medium High

B
u
ff
e
r

p
o
o
l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(a) Map Browsing

Low

BP-cutoff

High

Low Medium High

B
u
ff
e
r

p
o
o
l
s
iz

e

Query density

IO

m

ix
e
d

C

P
U

b
o
u
n
d

 b

o
u
n
d

(b) Land Info Management

Figure 8: Resource usage maps for realistic workloads

0

20

40

60

80

100

0 20 40 60 80 100

IO
 w

ai
t

CPU load

 1. AreaContainsArea
 3. AreaEqualsArea
 6. AreaTouchesArea
15. LargestArea
24. LongestLine
29. TotalArea

 2. AreaDisjointArea
 4. AreaOverlapsArea
 7. AreaWithinArea
17. LineCrossesLine
25. PointEqualsPoint
30. TotalLength

11. DimensionPolygon
12. DistanceFromPoint
14. LargestAreaContainsPoint
19. LineIntersectsLargestArea
26. PointIntersectsArea

13. EnvelopeLine

28. PointWithinArea

 8. BoundingBox
18. LineIntersectsArea
21. LineTouchesArea
27. PointIntersectsLine

16. LineCrossesArea
20. LineOverlapsArea
22. LineWithinArea

 5. AreaOverlapsLargestArea
10. ConvexHullPolygon
23. LongestLineIntersectsArea

Figure 9: Classification for Informix.

0

20

40

60

80

100

0 20 40 60 80 100

IO
 w

ai
t

CPU load

 1. AreaContainsArea
 3. AreaEqualsArea
 6. AreaTouchesArea
 9. BufferPolygon
26. PointIntersectsArea

 2. AreaDisjointArea
 4. AreaOverlapsArea
 7. AreaWithinArea
25. PointEqualsPoint
28. PointWithinArea

11. DimensionPolygon
12. DistanceFromPoint
14. LargestAreaContainsPoint
19. LineIntersectsLargestArea
24. LongestLine

13. EnvelopeLine

30. TotalLength

 8. BoundingBox
16. LineCrossesArea
18. LineIntersectsArea
21. LineTouchesArea
27. PointIntersectsLine

15. LargestArea
17. LineCrossesLine
20. LineOverlapsArea
22. LineWithinArea
29. TotalArea

 5. AreaOverlapsLargestArea
10. ConvexHullPolygon
23. LongestLineIntersectsArea

Figure 10: Classification with larger dataset (contiguous US).

nal query processing optimizations, data layout on disk, and other
database internals of Informix, the classification framework was
able to accurately place these spatial queries according to their re-
source utilization. Moreover, although Informix seems to perform
more computation and do slightly more I/O for some of the queries
classified as low utilization for PostgreSQL (marked with orange
circles), the classification model is still able to distinguish these
relatively short-running queries from the data-intensive cluster of
queries and mark them as low utilization for Informix as well.

6.2 Dataset scalability
An important aspect of our classification is that it can be per-

formed for any size spatial dataset. To illustrate this, we validated
our approach against a much larger dataset. We used TIGER data
for the entire contiguous US (48 states, instead of just the state of
Texas), which amounted to roughly 32GB. We adjusted the buffer
pool sizes in line with our concept of testing at extreme low and
high settings to accurately determine the nature of a spatial query
(computationally-intensive, data intensive, or mixed).

Figure 10 shows that the overall trend for spatial queries on the
US dataset is towards more computation than for the Texas dataset,
for all queries analyzed, with I/O making slightly less of an im-

pact. In most cases, the spatial queries remain in the same classes
as before, with two surprising exceptions. Two of the queries that
were previously classified as data-intensive (PointIntersectsArea
and PointWithinArea) on the Texas dataset have now migrated to-
wards computationally intensive. The trend towards more com-
putation is explicable since in the case of complex queries more
objects lead to more complex geometry calculations, and computa-
tions on larger data end up outweighing the increased disk activity.

The queries labelled low-utilization with the Texas dataset re-
main low-utilization on the US dataset as well, and are classified
as such. However, there is a slight trend towards either the data
becoming more dominant (e.g., LongestLineIntersectsArea), or the
computation (e.g., ConvexHullPolygon).

Overall, the experiments with a larger dataset confirm that our
classification method exposes the inherent nature of spatial queries.
However, these results must be considered in the context of the
spatial dataset, since the inherent features of a large dataset may
sway some of the spatial queries towards a different class.

7. RELATED WORK
A survey of the early research on workload characterization can

be found in [6]. Various research projects attempted to characterize
database workloads using different approaches. Yu et al. [26] pre-
sented a method based on the analysis of the structure of SQL state-
ments, the behavior of transactions, and the composition of tables
and views. Several projects used clustering techniques to group
workloads based on similarity metrics, such as response time. Some
of the early works that used clustering to classify workloads are
summarized in [18]. Wasserman et al. [24] described a database
workload classification approach based on system resource attributes.
A few studies focused on characterizing the database access pat-
terns. For instance, in [8] the authors identified three types of ac-
cess patterns. Additionally, they addressed the issue of characteriz-
ing the random access pattern and predicting its buffer hit probabil-
ities with various buffer pool configuration. Sapia [20] studied the
high level access patterns of OLAP (Online Analytical Processing)
queries with an eye towards improved caching techniques. Using
trace-driven simulations Hsu et al. [12] systematically examined
the properties of production workloads in relation to the TPC-C and
TPC-D workloads and concluded that the production workloads are
dynamic and time-varying in their characteristics. Oh and Lee [16]
conducted a study to analyze how changes in resource size impact
resource usage and proposed a method to identify the resources
with significant influence over system performance.

Other research projects investigated database workloads to study
hardware system behavior and performance issues in commercial
applications. Barroso et al. [3] examined the memory system be-
havior of the OLTP and DSS workloads. In [14] the database per-
formance on SMT processors was analysed, whereas, in [13] the
authors studied the effectiveness of several architectural features of
a multiprocessor SMP running commercial database workloads.

384

Previous database workload characterization research dealt with
traditional database workloads, such as those from the TPC suites.
In contrast, we focus on spatial database workloads. An impor-
tant aspect of our approach is the small number of profile runs that
are required per workload to produce the resource usage map, in
contrast to other approaches such as [16] that require many more
profile runs to characterize resource usage.

Databases are not unique in being the subject of workload char-
acterization. Arlitt [2] characterized user sessions from web page
accesses. Eeckhout et al. focused on Java workload characteri-
zation [9]. Many other examples of workload characterization re-
search can be found.

8. CONCLUSIONS
Spatial workloads are different from previously studied database

workloads. Using microprocessor performance events, we show
that spatial queries stress the CPU in different ways from decision
support queries in TPC-H. This may point to opportunities for im-
proving the implementation of spatial operators.

We then introduce a two-stage framework for classifying spatial
queries based on their nature (compute-intensive, data-intensive or
mixed) and characterizing spatial workloads based on resource uti-
lization at various settings. Our approach is unique because we
incorporate concurrent query interaction by varying query density.
Thus, we capture the dynamic nature of the resource consumption
of spatial workloads with the change in query density and system
configuration parameters. Finally, we show how this framework
can characterize any spatial workload simulating real-world appli-
cations. We also present a novel resource usage map that provides
a concise, yet information-rich description of the workload behav-
ior with various system configurations and load conditions. This
serves as a tool for database administrators (DBAs) to use in de-
termining which resources are heavily utilized and thus to perform
resource upgrades in a smart way.

We validate our methodology using a second DBMS and a sec-
ond, much larger dataset. As future work, our goal is to apply this
process dynamically to detect changes in workloads online, thereby
supporting dynamic provisioning.

9. ACKNOWLEDGMENTS
We would like to thank Ryan Johnson and the anonymous re-

viewers for their valuable feedback. We also thank Eric Logan for
assistance with machine configurations. This research was sup-
ported by an NSERC Discovery Grant. Suprio Ray is supported by
an NSERC PGS-D scholarship.

10. REFERENCES
[1] A. G. Ailamaki, D. J. Dewitt, M. D. Hill, and D. A. Wood.

DBMSs on a modern processor: Where does time go. In Intl
Conference on Very Large Data Bases, pages 266–277, 1999.

[2] M. Arlitt. Characterizing web user sessions. Sigmetrics
Performance Evaluation Review, 28:50–63, 2000.

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In Intl
Symposium on Computer Architecture, pages 3–14, 1998.

[4] The Calibrator, a cache-memory and TLB calibration tool.
http://homepages.cwi.nl/ manegold/Calibrator/.

[5] M. Calzarossa and L. Massari. Workload characterization
issues and methodologies. In Performance Evaluation:
Origins and Directions, Lect. Notes Comput. Sci., 2000.

[6] M. Calzarossa and G. Serazzi. Workload characterization: a
survey. Proceedings of The IEEE, 81:1136–1150, 1993.

[7] City of Austin GIS Data Sets.
ftp://ftp.ci.austin.tx.us/GIS-Data/Regional/coa_gis.html.

[8] A. Dan, P. S. Yu, and J. Chung. Characterization of database
access pattern for analytic prediction of buffer hit probability.
The VLDB Journal, 4:127–154, 1995.

[9] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the
microarchitectural level. In Proc. of OOPSLA, pages
169–186, 2003.

[10] S. Elnaffar. Towards workload-aware DBMSs: Identifying
Workload Type and Predicting its change. PhD thesis,
Queen’s University, Canada, 2004.

[11] S. Elnaffar, P. Martin, and R. Horman. Automatically
classifying database workloads. In Intl Conference on Info.
and Knowledge Management, pages 622–624, 2002.

[12] W. W. Hsu and A. J. Smith. Characteristics of production
database workloads and the TPC benchmarks. IBM Systems
Journal, 40:781–802, 2001.

[13] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker. Performance characterization of a Quad
Pentium Pro SMP using OLTP workloads. In Intl Symposium
on Computer Architecture, volume 26, pages 15–26, 1998.

[14] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. S. Parekh. An analysis of database workload
performance on simultaneous multithreaded processors. In
Intl Symposium on Computer Arch., pages 39–50, 1998.

[15] J. N. Michael H. Kutner, Christopher J. Nachtsheim and
W. Li. Applied Linear Statistical Models (5th edition).
McGraw-Hill International, New York, 2005.

[16] J. S. Oh and S. H. Lee. Resource selection for autonomic
database tuning. In ICDE Workshops, 2005.

[17] Open Geospatial Consortium.
http://www.opengeospatial.org/ogc.

[18] K. E. E. Raatikainen. Cluster analysis and workload
classification. Sigmetrics Performance Evaluation Review,
20:24–30, 1993.

[19] S. Ray, B. Simion, and A. D. Brown. Jackpine: A benchmark
to evaluate spatial database performance. In Intl. Conf. on
Data Engineering, April 2011.

[20] C. Sapia. PROMISE: Predicting query behavior to enable
predictive caching strategies for OLAP systems. In Data
Warehousing and Knowledge Disc., pages 224–233, 2000.

[21] G. Soundararajan, D. Lupei, S. Ghanbari, A. D. Popescu,
J. Chen, and C. Amza. Dynamic resource allocation for
database servers running on virtual storage. In Conference on
File and Storage Technologies, pages 71–84, 2009.

[22] TIGER R©, TIGER/Line R© and TIGER R©-Related Products.
http://www.census.gov/geo/www/tiger.

[23] The Transaction Processing Performance Council.
http://www.tpc.org.

[24] T. J. Wasserman, P. Martin, D. B. Skillicorn, and H. Rizvi.
Developing a characterization of business intelligence
workloads for sizing new database systems. In Intl Workshop
on Data Warehousing and OLAP, pages 7–13, 2004.

[25] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback.
Self-tuning database technology and information services:
from wishful thinking to viable engineering. In Intl
Conference on Very Large Data Bases, pages 20–31, 2002.

[26] P. S. Yu, M. Chen, H. Heiss, and S. Lee. On workload
characterization of relational database environments. IEEE
Transactions on Software Engineering, 18:347–355, 1992.

385

