
GetMobile    July 2016 | Volume 20, Issue 334

[HIGHLIGHTS]

that lets them construct custom wake-up 
conditions by linking together and param-
eterizing predefined sensor data processing 
algorithms. Sidewinder’s wake-up condi-
tions achieve energy efficiency matching 
fully programmable offloading, but do so 
with a much simpler programming interface 
that facilitates deployment and portability. 

INTRODUCTION
A typical smartphone, such as the LG Nexus 
5, contains an accelerometer, barometer, 
compass, gyroscope, proximity sensor, 
ambient light sensor, hall effect sensor, 
geo-spatial positioning sensors (GPS, 
GLONASS, Beidou), a microphone and two 
cameras. Despite having such a rich array 
of sensors, most of them go unused most of 
the time. Currently, smartphones are used 
intermittently, where the user will open an 

application, such as a game, news or social 
media application, interact for a few min-
utes and then put their device down. Taking 
advantage of this usage pattern, mobile 
platforms have been heavily optimized to 
rely on a low-power sleep state when not in 
use to improve battery life. 

While this approach to improving battery 
life has fared well with the intermittent 
usage scenario, it falls short in the face of 
continuous sensing applications, which 
operate on a constant stream of sensor data. 
These applications prevent the processor 
from entering its low-power sleep state, 
resulting in poor battery life and ultimately, 
a slow emergence of continuous sensing 
applications. Despite poor battery life, some 
continuous sensing applications such as 
Pokémon Go [1] have gained tremendous 
popularity. Pokémon Go players have quickly 

Daniyal Liaqat, Silviu Jingoi, Wilson To, Ashvin Goel and Eyal de Lara University of Toronto

Editors: Nic Lane and Xia Zhou

SIDEWINDER:
Efficient and  
Easy-to-Use  
Continuous  
Sensing 

pplications that perform continuous 
sensing on mobile phones have the 
potential to revolutionize every-

day life. Examples range from medical and 
health monitoring applications, such as 
pedometers and fall detectors, to par-
ticipatory sensing applications, such as 
noise pollution, traffic and seismic activity 
monitoring. Unfortunately, current mobile 
devices are a poor match for continuous 
sensing applications as they require the de-
vice to remain awake for extended periods 
of time, resulting in poor battery life. We 
present Sidewinder, a new approach toward 
offloading sensor data processing to a low-
power processor and waking up the main 
processor when events of interest occur. 
Sidewinder differs from other heteroge-
neous architectures in that developers are 
presented with a programming interface Ph

ot
o,

 is
to

ck
ph

ot
o.

co
m

Excerpted from “Sidewinder: An Energy Efficient and Developer Friendly Heterogeneous Architecture for Continuous  
Mobile Sensing,” from Proceedings of the Twenty-First International Conference on Architectural Support for Programming  
Languages and Operating Systems with permission. http://dl.acm.org/citation.cfm?id=2872398 © ACM 2016 



35July 2016 | Volume 20, Issue 3   GetMobile

realized that playing will drain their battery in 
mere hours, and many have taken to carrying 
around external battery packs to keep their 
phones alive for longer. We believe that there 
must be a more elegant solution. 

It is generally accepted that the solution 
to energy-effi  cient continuous sensing lies in 
a heterogeneous architecture, in which one 
or more low-power, peripheral processors 
(referred to as a sensor hub) collect and 
process sensor data while the main processor 
is in its sleep state. Th e sensor hub fi lters 
out data that is unlikely to be interesting 
and wakes up the main processor when 
a potential event of interest is detected, 
allowing for further processing on the main 
processor. However, the programming 
model for these heterogeneous architectures 
remains an open research question. On 
one end of the spectrum, researchers have 
proposed a fully programmable model 
[2,3,4] that allows application developers 
to write arbitrary code that runs on the 
low-power processor. While this would 
provide potentially great fl exibility and 
power savings, there are many drawbacks. 
Application developers not only have to be 
familiar with programming the low-power 
processor, they also have to account for 
hardware diff erences between devices. It 
is also unclear how this model supports 
applications running concurrently. On 
the other end is prede� ned activity, an 
approach in which hardware manufacturers 
provide a sensor hub that is hardwired to 
detect a few specifi c events. Both iOS and 
Android provide frameworks for detecting 
predefi ned activities, such as signifi cant 
motion and steps [5,6]. Such frameworks are 
very easy to use from a developer’s point of 
view and provide signifi cant energy savings; 
however, they are limited to detecting only 
events predefi ned by the manufacturer. 

Sidewinder is a new approach for 
continuous mobile sensing that splits the 
work of energy-effi  cient event detection 
between the platform and the application 
developer. With Sidewinder, the platform 
implements common sensor data processing 
algorithms (e.g., windowing, noise reduction, 
feature extraction, admission control) that 
execute natively on a low-power sensor hub, 

and application developers construct custom 
wake-up conditions by linking together and 
parameterizing these algorithms. Custom 
wake-up conditions execute on the low-
power sensor hub and, when potential events 
of interest are detected, the main processor 
is woken up and the rest of the application 
code is invoked. Th ese wake-up conditions 
do not need to have high precision. In fact, 
we envision that most wake-up conditions 
will have high recall and moderate precision. 
Th ey will fi lter out the majority of sensor 
data, which is unlikely to be interesting, 
and wake up the main processor when a 
potentially interesting event has occurred, 
allowing the application to run higher 
precision classifi ers on the main processor. 

Sidewinder’s design has many benefi ts. 
Firstly, it has lower programming complexity 
because application developers can use the 
predefi ned processing algorithms, rather 
than implementing their own. Additionally, 
Sidewinder allows developers to write 
wake-up conditions in the same language as 
the rest of their application, making writing 
wake-up conditions even easier. Secondly, 
Sidewinder’s sensor processing algorithms 

can be better optimized because they are 
written and tested by experts working for the 
manufacturer. Sidewinder also has better 
security. Since algorithms are provided by 
the manufacturer, they can be trusted and 
reasoned about. Finally, Sidewinder wake-up 
conditions are more portable. Programmers 
do not have to be aware of the specifi cs of the 
underlying hardware, nor create a version 
for every type of platform. Manufacturers 
are free to use any type of hardware they 
want (processor, DSP, FPGA or networks of 
processors/DSPs/FPGAs) and developers do 
not need to write their wake-up conditions 
specifi cally for the hardware. 

DESIGN 
Figure 1 shows the architecture of a 
Sidewinder system. Th e sensor manager 
contains an API that developers can 
use to create their wake-up conditions. 
Applications interact with the sensor manager 
to deploy their custom wake-up conditions 
to the low-power sensor hub. Th e low-power 
sensor hub contains implementations of 
commonly used algorithms. Once confi gured 
by the developer, the wake-up condition is 

FIGURE 1. System architecture: The sensor manager is part of the OS, and the Sensor Hub 
and Sensors are hardware provided by the manufacturer. 

[HIGHLIGHTS]



GetMobile    July 2016 | Volume 20, Issue 336

converted into an intermediate language by 
the sensor manager and pushed to a runtime 
or interpreter on the low-power sensor 
hub. When running on the sensor hub, the 
custom wake-up condition wakes the main 
CPU if an event of interest occurs. 

Th e manufacturer is responsible for 
providing the hardware and soft ware of the 
low-power sensor hub. Th e hardware could 
be a network of one or more processors, 
Digital Signal Processors (DSP), FPGAs 
or microcontrollers. For example, there 
could be one larger processor to handle 
all sensors and algorithms or a DSP for 
the microphone and an FPGA for each of 
the other sensors. Th e manufacturer also 
needs to provide a runtime to manage 
this hardware and an implementation of 
common sensor data processing algorithms. 
Th e runtime needs to be able to receive 
wake-up condition confi gurations from the 
sensor manager, confi gure the hardware and 
algorithms, execute the resulting wake-up 
condition and notify applications when an 
event of interest occurs. 

Application developers create custom 
wake-up conditions for their event(s) 
of interest. Since common sensor data 
processing algorithms are provided by 
the manufacturer, developers only need 
to parameterize and chain together 
these algorithms to create their wake-up 
conditions. For example, a developer could 
create a mood log application that tracks 
the user's mood over time by converting 
user’s speech to text and running sentiment 
analysis. Th is can be broken down into two 
steps, the fi rst is determining if microphone 

data contains speech. If it contains speech, 
then the next step will convert the speech 
to text and run sentiment analysis. Th e 
fi rst stage can run on the low-power sensor 
hub, waking the main processor only when 
speech is detected. Th e speech detection on 
the low-power sensor may be implemented 
as shown in Figure 2. Microphone data is 
fi rst segmented into windows. For each 
window, variance of the zero crossing rate 
and variance of the signal amplitude is 
calculated. If the zero crossing rate is less 
than a threshold and the amplitude exceeds a 
threshold, the wake-up condition is satisfi ed 
and the main processor is woken up. 

PROTOTYPE 
Our Sidewinder prototype is built around 
a Google Nexus 4 phone running Android 
4.2.2. Since the Nexus 4 does not have an 
easily programmable sensor hub built in, 
we implemented our low-power sensor hub 
using a Texas Instruments (TI) MSP430 or 
LM4F120 microcontroller attached to an 
accelerometer sensor and a microphone. 
Th e Nexus 4 and microcontroller 
communicate over the UART port made 
available by the Nexus 4 debugging interface 
via the audio interface jack. 

We implemented a sensor manager 
and intermediate language as part of our 
prototype. Th e Sidewinder sensor manager 
is based on the Android Sensor Manager [7]. 
It contains information about the available 
sensors and processing algorithms and 
provides developers with an API to confi gure 
custom wake-up conditions. Upon receiving 
a wake-up condition confi guration, the 

sensor manager generates intermediate code 
that will be pushed to the hardware. 

Our implementation of the Sidewinder 
runtime is written in C and resembles a 
simple interpreter. It contains implementa-
tions of Fourier Transforms, averaging, low/
high pass fi ltering, vector magnitude, zero 
crossing rate and threshold algorithms. 

We developed six applications to per-
form continuous sensing on accelerometer 
or microphone data. For each of the 
applications, we constructed a wake-up 
condition using the algorithms that were 
available on the sensor hub. 

EVALUATION AND RESULTS 
We evaluated Sidewinder using trace-driven 
simulation. We measured power usage 
for our hardware to create a power model 
and collected accelerometer and audio 
traces. Th is data was fed into our simulator, 
which modeled the behavior and power 
consumption of our devices under various 
confi gurations and applications. 

In our testing, we found that the Nexus 
4 phone consumes 323 mW of power while 
awake with the screen, Wi-Fi and GPS 
turned off . In the sleep state, it consumes 
9.7 mW of power. Additionally, the phone 
consumes more power during transitions 
between asleep and awake states. Th ese 
transitional states were also accounted for 
in our simulation. We found the TI MSP430 
microcontroller to consume 3.6 mW of power. 

To obtain accelerometer traces labeled 
with reliable ground truth, we mounted the 
smartphone and microcontroller on the back 
of an ERA 210 robotic dog (see Figure 3), 
which was instructed to perform a circuit 

FIGURE 2. A Mood Log application in which the low-power sensor hub wakes 
up the main processor when speech is detected. Speech detection is performed 
using a relatively simple zero crossing rate method and the main processor runs 
more advanced speech to text and sentiment analysis.

FIGURE 3. Aibo robotic dog used for 
data collection.

[HIGHLIGHTS]



37July 2016 | Volume 20, Issue 3   GetMobile

consisting of Steps, Posture Transitions, and 
Headbutts. Because the robot’s actions can be 
scripted, this setup provides an effi  cient and 
reliable way to determine ground truth. In 
contrast, labeling data collected from human 
subjects with ground truth is error-prone 
and labor-intensive.

Figure 4 shows the power usage 
for the accelerometer apps under four 
confi gurations. Our audio applications 
followed a similar trend and are not shown 
here. Th e four confi gurations are:

 
• Always awake: A naïve approach where 

the phone is always awake to process 
sensor data. 

• Predefi ned Activity: Based on Android’s 
built-in signifi cant motion and a similar 
signifi cant audio detector, which wake up 
and call an application-provided callback 
when acceleration or sound exceed a 
fi xed threshold. We set the threshold so 
that it optimizes performance across all 
applications. 

• Sidewinder: Wake-up conditions for 
each application were constructed by 
parameterizing and chaining together 
algorithms provided by the sensor hub. 

• Oracle: A hypothetical ideal 
implementation that only wakes up 
when the event of interest occurs. Such a 
wake-up condition would achieve perfect 
detection precision and recall, with the 
lowest possible power consumption. 

How Close to Optimal is Sidewinder? 
By comparing the performance of 
Sidewinder to Oracle, we found that 
Sidewinder achieves between 93% and 
96% of the possible power savings for our 

accelerometer-based applications. Audio 
applications performed similarly, saving 
between 85% and 98%. Overall, Sidewinder 
realizes 85% to 98% of the potential energy 
savings. Th is suggests that there is little 
additional energy savings to be realized by 
off ering full programmability. 

Sidewinder vs. Predefi ned Activity 
In our experiments, Steps were much 
more likely to occur than Transitions, and 
Transitions were much more likely to occur 
than Headbutts. Since Predefi ned Activity 
cannot be parameterized in any way, it 
wakes up the main processor when any 
one of the three events occur. Th ese false 
positives waste energy, especially when 
the event of interest occurs infrequently. 
We conclude that predefi ned activities are 
unlikely to effi  ciently support a wide range of 
applications. Th is is particularly the case for 
applications interested in infrequent events. 

CONCLUSION 
Sidewinder is a new approach for 
continuous mobile sensing. In Sidewinder, 
the platform implements common sensor 
data processing algorithms that execute 
on a low-power processor, and application 
developers construct wake-up conditions 
for events of interest by chaining together 
and parameterizing predefi ned processing 
algorithms. We implemented a prototype 
based on a Nexus 4 and TI MSP430 and 
developed several applications using 
accelerometer and microphone data. We 
found that Sidewinder wake-up conditions 
were easy to write and achieved 85% to 
98% of the energy savings of a theoretically 
optimal solution. n 

Daniyal Liaqat joined the System and 
Networking group at University of Toronto as 
a PhD student in 2014 after completing his 
BSc in Computing Science from Simon Fraser 
University. His research interests include systems 
level support for continuous sensing in mobile 
devices and applications of continuous sensing, 
particularly towards health monitoring.

Silviu Jingoi is a software engineer at Cisco 
Systems, contributing to the next-generation 
Software Defi ned Networking (SDN) strategy. 
He completed his MSc degree in Computer 
Science at University of Toronto in 2014. His 
main areas of interest are effi  cient networking 
systems and mobile computing, primarily 
conducting research on energy-effi  cient 
sensing on mobile devices.

Ashvin Goel received a Ph.D. degree in com-
puter science and engineering from Oregon 
Graduate Institute, Portland in 2003, where his 
research focused on providing system support 
for interactive media-streaming applications. 
He is now an associate professor in the Depart-
ment of Electrical and Computer Engineering at 
University of Toronto. His research interests are 
in the general area of operating systems, focus-
ing on improving the reliability and security of 
software systems. He has published in systems 
conferences, such as SOSP, OSDI, ASPLOS, FAST 
and Eurosys. 

Eyal de Lara is a professor in the Department 
of Computer Science of the University of 
Toronto. His research interests lie in systems-
level support for mobile and cloud computing. 
He has a PhD in electrical and computer 
engineering from Rice University in Houston. 

FIGURE 4. Power usage for accelerometer applications.

REFERENCES
[1] Pokémon Go. http://www.pokemongo.com/en-us/. 
[2] X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. 

Refl ex: Using low-power processors in smartphones 
without knowing them. Proc. Conf. Architectural 
Support for Programming Languages and 
Operating Systems (ASPLOS), March 2012. 

[3] B. Priyantha, D. Lymberopoulos, and J. Liu. 
Littlerock: Enabling energy-effi  cient continuous 
sensing on mobile phones. Pervasive Computing, 
IEEE, 10(2):12–15, 2011. 

[4] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. 
Turducken: Hierarchical power management for 
mobile devices. In Proc. of the 3rd Conference 
on Mobile Systems, Applications, and Services 
(MobiSyS), Seattle, WA, June 2005. 
http://developer.android.com/guide/topics/sensors/
sensors_motion.html. 

[5] Core motion framework reference. https://developer.
apple.com/library/ios/documentation/coremotion/
reference/coremotion_reference/index.html. 

[6] Android motion sensors. 
[7] SensorManager | Android developers. 

https://developer.android.com/reference/android/
hardware/SensorManager.html. 

[HIGHLIGHTS]




