
This paper is included in the Proceedings of the 
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of  
the 16th USENIX Conference on  
File and Storage Technologies 

is sponsored by USENIX.

Spiffy: Enabling File-System Aware  
Storage Applications

Kuei Sun, Daniel Fryer, Joseph Chu, Matthew Lakier, Angela Demke Brown,  
and Ashvin Goel, University of Toronto

https://www.usenix.org/conference/fast18/presentation/sun



Spiffy: Enabling File-System Aware Storage Applications

Kuei Sun, Daniel Fryer, Joseph Chu, Matthew Lakier, Angela Demke Brown and Ashvin Goel
University of Toronto

Abstract
Many file-system applications such as defragmentation
tools, file system checkers or data recovery tools, oper-
ate at the storage layer. Today, developers of these stor-
age applications require detailed knowledge of the file-
system format, which takes a significant amount of time
to learn, often by trial and error, due to insufficient doc-
umentation or specification of the format. Furthermore,
these applications perform ad-hoc processing of the file-
system metadata, leading to bugs and vulnerabilities.

We propose Spiffy, an annotation language for speci-
fying the on-disk format of a file system. File-system de-
velopers annotate the data structures of a file system, and
we use these annotations to generate a library that allows
identifying, parsing and traversing file-system metadata,
providing support for both offline and online storage ap-
plications. This approach simplifies the development of
storage applications that work across different file sys-
tems because it reduces the amount of file-system spe-
cific code that needs to be written.

We have written annotations for the Linux Ext4, Btrfs
and F2FS file systems, and developed several applica-
tions for these file systems, including a type-specific
metadata corruptor, a file system converter, and an on-
line storage layer cache that preferentially caches files
for certain users. Our experiments show that applica-
tions that use the library to access file system metadata
can achieve good performance and are robust against file
system corruption errors.

1 Introduction

There are many file-system aware storage applications
that bypass the virtual file system interface and operate
directly on the file system image. These applications re-
quire a detailed understanding of the format of a file sys-
tem, including the ability to identify, parse and traverse
file system structures. These applications can operate in
an offline or online context, as shown in Table 1. Ex-
amples of offline tools include a file system checker that
traverses the file system image to check the consistency
of its metadata [17], and a data recovery tool that helps
recover deleted files [4].

Online storage applications need to understand the
file-system semantics of blocks as they are accessed at
runtime (e.g., whether the block contains data or meta-
data, whether it belongs to a specific type of file, etc.).

Storage Applications Category Purpose
Differentiated services [18] online

performance
Defragmentation tool either
File system checker [13] either

reliability
Data recovery tool [4] offline
IO shepherding [12] online
Runtime verification [8] online
File system conversion tool offline

administrative
Partition editor [11] offline
Type-specific corruption [2] offline

debugging
Metadata dump tool offline

Table 1: Example file-system aware storage applications.
Offline applications have exclusive access to the file sys-
tem; online applications operate on an in-use file system.

These applications improve the performance or reliabil-
ity of a storage system by performing file-system specific
processing at the storage layer. For example, differenti-
ated storage services [18] improve performance by pref-
erentially caching blocks that contain file-system meta-
data or the data of small files. I/O shepherding [12]
improves reliability by using file structure information
to implement checksumming and replication. Similarly,
Recon [8] improves reliability by verifying the consis-
tency of file-system metadata at the storage layer.

Today, developers of these storage applications per-
form ad-hoc processing of file system metadata because
most file systems do not provide the requisite library
code. Even when such library code exists, its interface
may not be usable by all storage applications. For ex-
ample, the libext2fs library only supports offline in-
terpretation of a Linux Ext3/4 file system partition; it
does not support online use. Furthermore, the libraries of
different file systems, even when they exist, do not pro-
vide similar interfaces. As a result, these storage applica-
tions have to be developed from scratch, or significantly
rewritten for each file system, impeding the adoption of
new file systems or new file-system functionality.

To make matters worse, many file systems do not
provide detailed and up-to-date documentation of their
metadata format. The ad-hoc processing performed by
these storage applications is thus error-prone and can
lead to system instability, security vulnerability, and data
corruption [3]. For example, fsck can sometimes further
corrupt a file system [33]. Some storage applications re-
duce the amount of file-system specific code in their im-

USENIX Association 16th USENIX Conference on File and Storage Technologies    91



plementation by modifying their target file system and
operating system [18, 12]. This approach only works for
specific file systems, and can introduce its own bugs. It
also requires custom system software, which may be im-
practical in virtual machine and cloud environments.

Our aim is to reduce the burden of developing file-
system aware storage applications. To do so, we enable
file system developers to specify the format of their file
system using a domain-specific language so that the file
system metadata can be parsed, traversed and updated
correctly. We introduce Spiffy,1 a language for annotat-
ing file system data structures defined in the C language.
Spiffy allows file system developers to unambiguously
specify the physical layout of the file system. The anno-
tations handle low level details such as the encoding of
specific fields, and the pointer relationships between file
system structures. We compile the annotated sources to
generate a Spiffy library that provides interfaces for type-
safe parsing, traversal and update of file system meta-
data. The library allows a developer to write actions for
different file system metadata structures, invoking file-
system specific or generic code as needed, for their of-
fline or online application. We support online applica-
tions that need to read metadata, such as differentiated
storage services [18], but not ones that need to modify
metadata such as online defragmentation.

The generic interfaces provided by the library simplify
the development of applications that work across differ-
ent file systems. Consider an application that shows file-
system fragmentation by plotting a histogram of the size
of free extents in the file system. This application needs
to traverse the file system to find and parse structures
that represent free space, and then collect the extent in-
formation. With Spiffy, the application code for finding
and parsing structures is similar for different file systems.
File-system specific actions are only needed for collect-
ing the extent information from the free space structures
(e.g., bitmaps for Ext4 and free space extents for Btrfs).

The complexity of modern file systems [16] raises
several challenges for our specification-based approach.
Many aspects of file system structures and their relation-
ships are not captured by their declarations in header
files. First, an on-disk pointer in a file-system structure
may be implicitly specified, e.g., as an integer, as shown
below. The naming convention suggests that this field is
a pointer, but that fact cannot be deduced from the struc-
ture definition because it is embedded in file system code.

struct foo {
__le32 bar_block_ptr;

};

Second, the interpretation of file system structures can
depend on other structures. For example, the size of an

1Specifying and Interpreting the Format of Filesystems

inode structure in a Linux Ext3/4 file system is stored
in a field within the super block that must be accessed to
correctly interpret an inode block. Similarly, many struc-
tures are variable sized, with the size information being
stored in other structures. Third, the semantics of meta-
data fields may be context-sensitive. For example, point-
ers inside an inode structure can refer to either directory
blocks or data blocks, depending on the type of the in-
ode. Fourth, the placement of structures on disk may be
implicit in the code that operates on them (e.g., an in-
stance of structure B optionally follows structure A) and
some structures may not be declared at all (e.g., treat-
ing a buffer as an array of integers). Finally, metadata
interpretation must be performed efficiently, but it is im-
practical to load all file-system metadata into memory for
large file systems. These challenges are not addressed by
existing specification tools, as discussed in Section 7.

In Spiffy, the key to specifying the relationships be-
tween file system structures is a pointer annotation that
specifies that a field holds an address to a data structure
on physical storage. Pointers have an address space type
that indicates how the address should be mapped to the
physical location. In the struct foo example above,
this annotation would help clarify that bar_block_ptr
holds an address to a structure of type bar, and its ad-
dress space type is a (little-endian) block pointer. We ex-
pose cross-structure dependencies by using a name res-
olution mechanism that allows annotations to name the
necessary structures unambiguously. We handle context-
sensitive fields and structures by providing support for
conditional types and conditionally inherited structures.
We also provide support for specifying implicit fields
that are computed at runtime. Last, annotations can spec-
ify the granularity at which the structures should be ac-
cessed from storage, allowing efficient data access and
reducing the memory footprint of the applications.

Together, these Spiffy features have allowed us to
properly annotate three widely deployed file systems, 1)
Ext4, an update-in-place file system, 2) Btrfs, a copy-on-
write file system, and 3) F2FS, a log-structured file sys-
tem [15]. We have implemented five applications that are
designed to work across file systems: a file system dump
tool, a file system corruption tool, a free space display
tool, a file system converter, and a storage layer service
that preferentially caches data for specific users.

2 Bugs in File-System Applications

We motivate this work by presenting various bugs caused
by incorrect parsing of file-system metadata in storage
applications (outlined in Table 2). Some of these bugs
cause crashes, while others may result in file system cor-
ruption. For each bug, we discuss the root cause.

1. An extra memory allocation caused uninitialized bytes

92    16th USENIX Conference on File and Storage Technologies USENIX Association



Tool FS Bug Title Closed
1 libparted Fat32 #22266: jump instruction and boot code corrupted with random bytes after fat is resized 2016-05
2 ntfsprogs NTFS Bug 723343 - Negative Number of Free Clusters in NTFS Not Properly Interpreted 2014-02
3 e2fsck Ext4 #781110 e2fsprogs: e2fsck does not detect corruption 2016-05
4 e2fsck Ext4 #760275 e2fsprogs: e2fsck corrupts Hurd filesystems 2015-05
5 btrfsck Btrfs Bug 104141 - Malformed input causing crash / floating point exception in btrfsck 2015-10

Table 2: Bugs due to incorrect parsing of file system formats.

to be written to the boot jump field of Fat32 file sys-
tems during resizing. Since Windows depends on the
correctness of this field, the bug rendered the file sys-
tem unrecognizable by the operating system.

2. NTFS has a complex specification for the size of the
MFT record. If the value is positive, it is interpreted
as the number of clusters per record. Otherwise, the
size of the record is 2|value| bytes (e.g., −10 would
mean that the record size is 1024 bytes). The devel-
opers of ntfsprogs were unaware of this detail, and so
the GParted partition editing tool would fail when at-
tempting to resize an NTFS partition.

3. The e2fsck file system checker failed to detect cor-
rupted directory entries if the size field of the entries
was set to zero, which resulted in no repair being per-
formed. Ironically, other programs, such as debugfs,
ls, and the file system itself, could correctly detect the
corruption.

4. Ext2/3/4 inodes contain union fields for storing oper-
ating system (OS) specific metadata. A sanity check
was omitted in e2fsck prior to accessing this field, and
repairs were always performed assuming that the cre-
ator OS is Linux. Consequently, the file system be-
comes corrupt for Hurd and possibly other OSs.

5. A fuzzer [34] was able to craft corrupted super blocks
that would crash the Btrfsck tool. In response, Btrfs
developers added 15 extra checks (for a total of 17
checks) to the super block parsing code.

The common theme among all these bugs is that: 1)
they are simple errors that occur because they require a
detailed understanding of the file system format; 2) they
can cause serious data loss or corruption; and 3) most
of these bugs were fixed in less than 5 lines of code. Our
domain-specific language allows generating libraries that
can sanitize file system metadata by checking various
structural constraints before it is accessed in memory. In
the presence of corrupted metadata, our libraries gener-
ate error codes, rather than crashing the tools or propa-
gating the corruption further. Section 3.1 discusses how
our approach can help prevent or detect these bugs.

3 Approach

Our annotation language enables type-safe interpretation
of file system structures, in both offline and online con-

texts. Type safety ensures that parsing and serialization
of file system structures will detect data corruption that
leads to type violations, thus reducing the chance of cor-
ruption propagation, and avoiding crash failures.

Ideally, data structure types and their relationships
could be extracted from file system source code. Al-
though the C header files of a file system contain the
structural definitions for various metadata types, they are
incomplete descriptions of the file system format because
information is often hidden within the file system code.
Our annotations augment the C language, helping spec-
ify parts of a file system’s format that cannot be easily
expressed in C.

After a file system developer annotates his or her file
system’s data structures, we use a compiler to parse the
annotated structures and to generate a library that pro-
vides file-system specific interpretation routines. The li-
brary supports traversal and selective retrieval of meta-
data structures through type introspection. These facili-
ties allow writing generic or file-system specific actions
on specific file system metadata structures. For exam-
ple, the application may wish to operate on the directory
entries of a file system. Instead of attempting to parse
the entire file system and find all directory entries, which
requires significant file-system specific code, a developer
using Spiffy would use generic type introspection code to
find and operate on all directory entries. However, since
the directory entry format may not be the same across file
systems, the application may require file-system specific
actions on the directory entry structures.

Our annotation-based approach has several advan-
tages. First, it provides a concise and clear documen-
tation of the file system’s format. Second, our gen-
erated libraries enable rapid prototyping of file-system
aware storage applications. The libraries provide a uni-
form API, easing the development of applications that
work across file systems so that the programmer can fo-
cus on the logic and not the format of the file systems.
Third, our approach requires minimal changes to the file
system source code (the annotations are only in the C
header files and are backwards compatible with existing
binary code), reducing the chance of introducing file sys-
tem bugs. In contrast, differentiated storage services [18]
needed to modify the file system and the kernel’s storage
stack to enable I/O classification. With our approach,
this application can be implemented by using introspec-

USENIX Association 16th USENIX Conference on File and Storage Technologies    93



struct ext4_dir_entry {
__le32 inode; /* Inode number */
__le16 rec_len; /* Directory entry length */
__u16 name_len; /* Name length */
char name[EXT4_NAME_LEN]; /* File name */

};

Figure 1: Ext4 directory entry structure definition.
Checkpoint Region

Checkpoint Pack #1 Checkpoint Pack #2

Checkpoint 
Header

Orphan 
Blocks

Data Summary 
Blocks

Checkpoint Pack

Node Summary 
Blocks

Checkpoint
Footer

cphdr

Figure 2: Each F2FS checkpoint pack contains a header
followed by a variable number of orphan blocks.

tion at the block layer for an unmodified file system, or
at the hypervisor for an existing virtual machine. Finally,
file system formats are known to be stable over time, so
there is minimal cost for maintaining annotations.

3.1 Designing Annotations
The design of our annotation language for specifying the
format of file system structures was motivated by several
key concepts.
File System Pointers File system pointers connect the
metadata structures in a file system, but they are not well
specified in C data structure definitions, as explained in
Section 1. The difference between a file system pointer
and an in-memory pointer is that the content of an in-
memory pointer is always interpreted as the in-memory
address of the pointed-to data, but interpreting the ad-
dress contained by a file system pointer may involve mul-
tiple layers of translation. The most common type of
file system pointer is a block pointer, where the address
maps to a physical block location that contains a con-
tiguous data structure. However, file system structures
may also be laid out discontiguously. For example, the
journal of an Ext4 file system is a logically contiguous
structure that can be stored on disk non-contiguously, as
a file. Similarly, Btrfs maps logical addresses to physical
addresses for supporting RAID configurations.

Our design incorporates this requirement by associat-
ing an address space with each file system pointer. Each
address space specifies a mapping of its addresses to
physical locations. In the case of the Ext4 journal, we
use the inode number, which uniquely identifies files in
Unix file systems, as an address in the file address space.
Cross-Structure Dependencies File system structures
often depend on other structures. For example, the length

of a directory entry’s name in Ext4 is stored in a field
called name_len, as shown in Figure 1. However, this
data structure definition does not provide the linkage be-
tween the two fields.2 Structures may depend on fields
in other structures as well. For example, several fields
of the super block are frequently accessed to determine
the block size, the features that are enabled in the file
system, etc. To support these dependencies, we need
to name these structures. For example, the expression
sb.s_inode_size helps determine the size of an inode
object, where sb is the name assigned to the super block.

The naming mechanism must ensure that a name refers
to the correct structure. For example, the F2FS file sys-
tem contains two checkpoint packs for ensuring file sys-
tem consistency, as shown in Figure 2. The number of or-
phan blocks in a F2FS checkpoint pack is determined by
a field inside the checkpoint header. Our naming mecha-
nism must ensure that when this field is accessed, it refers
to the header structure in the correct checkpoint pack.

Spiffy uses a path-based name resolution mechanism,
based on the observation that every file system structure
is accessed along a path of pointers starting from the su-
per block. In the simplest case, the automatic self vari-
able is used to reference the fields of the same structure.
Otherwise, a name lookup is performed in the reverse or-
der of the path that was used to access the data structure.
For example, in Figure 2, when we need to reference the
checkpoint header (cphdr in the figure) while parsing
the orphan block, the name resolution mechanism can
unambiguously determine that it is referring to its parent
checkpoint header. This strategy also makes it easy to
use reference counting to ensure that a referenced struc-
ture is valid in memory when it needs to be accessed.

Context-Sensitive Types File system metadata are fre-
quently context-sensitive. A pointer may reference dif-
ferent types of metadata, or a structure may have optional
fields, based on a field value. For example, the type of a
journal block in Ext4 depends on a common field called
h_blocktype. If the field’s value is 3, then it is the jour-
nal super block that contains many additional fields that
can be parsed. However, if its value is 2, then it is a
commit block that contains no other fields. We need to
be able to handle such context-sensitive structures and
pointers. We use a when expression, evaluated at run-
time, to support such context-sensitive types. These con-
ditional expressions also allow us to specify when differ-
ent fields of a union are valid, which enables Spiffy to
enforce a strict access discipline at runtime, and would
prevent Bug #4 from Section 2.

Computed Fields Sometimes file systems compute a
value from one or more fields and use it to locate struc-
tures. For example, the block group descriptor table in

2Confusingly, name has a fixed size in the definition.

94    16th USENIX Conference on File and Storage Technologies USENIX Association



Base Class Member Function Description
Spiffy File System Library

Entity int process_fields(Visitor & v) allows v to visit all fields of this object
int process_pointers(Visitor & v) allows v to visit all pointer fields of this object
int process_by_type(int t, Visitor & v) allows v to visit all structures of type t

Pointer Entity * fetch() retrieves the pointed-to container from disk

Container int save(bool alloc=true)
serializes and then persists the container, may
assign a new address to the container

FileSystem FileSystem(IO & io) instantiates a new file system object
Entity * fetch_super() retrieves the super block from disk
Entity * create_container(int type, Path & p) creates a new container of metadata type
Entity * parse_by_type(int type, Path & p,
Address & addr, const char * buf, size_t len)

parses the buffer as metadata type, using
p to resolve cross structure dependencies

File System Developer
IO int read(Address & addr, char * & buf) reads from an address space specified by addr

int write(Address & addr, const char * buf) writes to an address space specified by addr
int alloc(Address & addr, int type) allocates an on-disk address for metadata type

Application Programmer
Visitor int visit(Entity * e) visits an entity and possibly processes it

Table 3: Spiffy C++ Library API.

Ext4 is implicitly the block(s) that immediately follows
the super block. However, the exact address of the de-
scriptor blocks depends on the block size, which is spec-
ified in the super block. We annotate this information
as an implicit field of the super block that is computed
at runtime. This approach allows the field to be derefer-
enced like a normal pointer, allowing traversal of the file
system without requiring any changes to the underlying
format. A computed field annotation can also be used
to specify the size calculation for an NTFS MFT record,
avoiding Bug #2 from Section 2.

Metadata Granularity Existing file systems assume
that the underlying storage media is a block device and
access data in block units. Data structures can exist
within such blocks or they can span contiguous physical
blocks. Some data structures that span blocks are read
in their entirety. For example, the Btrfs B-tree nodes are
(by default) 16KB, or 4 blocks, and these blocks are read
from disk together. In other cases, the data structure is
read in portions. For example, an Ext4 inode table con-
tains a group of inode blocks. The file system does not
load the entire table in memory because it can be very
large. Instead, it only loads the portions that are needed.

We define an access unit for file system structures so
that the compiler can generate efficient code for travers-
ing the file system. We call the unit of disk access a
container. The container size is typically the file system
block size but it may span multiple blocks, as in the Btrfs
example. A structure that is placed inside a container is
called an object. Finally, structures that span contain-
ers are called extents. We load extents on demand, when
their containers are accessed.

Constraint Checking The values of metadata fields
within or across different objects often have constraints.

For example, an Ext4 extent header always begins with
the magic number 0xF30A to help detect corrupt blocks.
Similarly, the name_len field of an Ext4 directory entry
should be less than the rec_len field. Such constraints
can be specified for each structure so that they can be
checked to ensure correctness when parsing the structure.
The use of constraint annotations could have helped pre-
vent Bug #1, and detect Bugs #3 and #5 from Section 2.

The set of valid addresses for a metadata container
may also have a placement constraint. For example,
F2FS NAT blocks can only be placed inside the NAT
area, which is specified in the F2FS super block. By
annotating the placement constraint of a metadata con-
tainer, Spiffy can verify that the address assigned to
newly allocated metadata is within the correct bounds
before the metadata is persisted to disk.

3.2 The Spiffy API
Table 3 shows a subset of the API for building Spiffy
applications. The API consists of three sets of functions.
The first set are automatically generated by Spiffy based
on the annotated file system data structures. The second
set need to be implemented by file system developers and
are reusable across different applications. The last set are
written by the application programmer for implementing
application and file-system specific logic.

The Spiffy library uses the visitor pattern [9], allow-
ing a programmer to customize the operations performed
on each file system metadata type by implementing the
visit function of the abstract base class Visitor.

The Entity base class provides a common inter-
face for all metadata structures and their fields. The
process_pointers function invokes the visit func-
tion of an application-defined Visitor class on each

USENIX Association 16th USENIX Conference on File and Storage Technologies    95



struct Address {
int aspc; /* address space type */
long id; /* id of the address */
unsigned offset; /* offset from id */
unsigned size; /* size of object */

};

Figure 3: Address structure to locate container on disk.

pointer within the entity. The process_by_type func-
tion allows visiting a specific type of structure that is
reachable from the entity. Unlike the other process
functions, process_by_type will automatically follow
pointers. For example, invoking process_by_type on
the super block with the inode structure as an argument
results in visiting all inodes in the file system.

Every container (and extent) has an address associated
with it that allows accessing the container from disk. Fig-
ure 3 shows the format of an address, consisting of an ad-
dress space, an identifier and an offset within the address
space, and the size of the container. The offset field is
used when a container belongs to an extent.

The Pointer class stores the address of a container
(or an extent), and its fetch function reads the pointed-
to container from disk. Figure 4 shows the generated
code for the fetch function for a pointer to a container
named IBlock (inode block). The file-system devel-
oper implements an IO class with a read function for
each address space defined for the file system. When the
IBlock is constructed, it invokes the constructors of its
fields, thus creating all the objects (e.g., inodes) within
the container. The constructors for inodes, in turn, invoke
the constructors of block pointers in the inodes, which
initialize a part of the address (address space, size and
offset) of the block pointers based on the annotations.
Then the container is parsed, which initializes the con-
tainer fields in a nested manner, including setting the id
component of the address of all the block pointers in the
inodes contained in the IBlock.

The Path object is associated with every entity and
contains the list of structures that are needed to resolve
cross-structure dependencies during parsing or serializ-
ing the container. It is set up based on the sequence of
constructor calls, with each constructor adding the cur-
rent object to the path passed to it.

The save function serializes a container by invoking
nested serialization on its fields. Then, it invokes the
alloc function for newly created metadata, or when ex-
isting metadata has to be reallocated (e.g., copy-on-write
allocator). The allocator finds a new address for the con-
tainer and updates any metadata that tracks allocation
(e.g., the Ext4 block bitmap). If the address passes place-
ment constraint checks, the buffer is written to disk.

The create_container function constructs empty
containers of a given type. The application developer

Entity * IBlockPtr::fetch() {
IBlock * ib;
Address & addr = this->address;
char * buf = new char[addr.size];
this->fs.io.read(addr, buf);
ib = new IBlock(this->fs, addr, this->path);
ib->parse(buf, addr.size);
return ib;

}

Figure 4: Example of a generated fetch function.
IBlockPtr is a subclass of Pointer.

can then fill the container with data and invoke save to
allocate and write the newly created container to disk.

3.3 Building Applications
Figure 5 shows a sample application built using the
Spiffy API. This application prints the type of each meta-
data block in an Ext4 file system in depth-first order. The
Ext4IO class implements the block and the file address
space, as described in Section 5. The program starts by
invoking fetch_super, which fetches the super block
from a known location on disk and parses it. Then it
uses two mutually recursive visitors, EntVisitor and
PtrVisitor, to traverse the file system.

The EntVisitor::visit function takes an
entity as input, prints its name, and then in-
vokes process_pointers, which calls the
PtrVisitor::visit function for every pointer in
the entity. The PtrVisitor::visit function invokes
fetch, which fetches the pointed-to entity from disk,
and invokes EntVisitor::visit on it.

3.4 Limitations
The correctness of Spiffy applications depends on cor-
rectly written annotations. Therefore, if and when file
system format changes do occur, the specifications will
need to be updated. Spiffy applications will also need
to update all file-system specific code that is affected by
the format changes. These changes will likely only affect
code that directly operates on the updated metadata struc-
tures, since the Spiffy library will provide safe traversal
and parsing of any intermediate structures.

Currently, we have implemented an online application
at the storage layer (metadata caching, see Section 5)
that reads file system metadata, but does not modify it.
We are exploring modifying file system metadata using
Spiffy at the storage layer (which requires hooks into
the file system code, e.g., for transactions and alloca-
tion [12]), and at the file system level (which enables
more powerful applications).

Unlike typical file-system applications that operate at
the VFS layer and are file-system independent, Spiffy ap-
plications operate directly on file-system specific struc-

96    16th USENIX Conference on File and Storage Technologies USENIX Association



EntVisitor ev;
PtrVisitor pv;
int PtrVisitor::visit(Entity & e) {

Entity * tmp = ((Pointer &)e).fetch();
if (tmp != nullptr) {

ev.visit(*tmp);
tmp->destroy();

}
return 0;

}
int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;
return e.process_pointers(pv);

}
void main(void) {

Ext4IO io("/dev/sdb1");
Ext4 fs(io);
Entity * sup;
if ((sup = fs.fetch_super()) != nullptr) {

ev.visit(*sup);
sup->destroy();

}
}

Figure 5: Code for traversing and printing the types of
all the metadata blocks in an Ext4 file system.

tures and are thus file-system dependent. Since file sys-
tems share common abstractions (e.g. files, directories,
inodes), it may be possible to carefully abstract the func-
tionality that is shared between implementations, reduc-
ing file-system dependence even further.

4 File System Applications

We have written five file-system aware storage applica-
tions using the Spiffy framework: a dump tool, a free
space reporting tool, a type-specific metadata corruptor,
a file system conversion tool, and a prioritized block
layer cache. The first four applications operate offline,
while the last one is an online application.

File System Dump Tool The file system dump tool
parses all the metadata in a file system image and exports
the result in an XML format, using file system traver-
sal code similar to the example in Figure 5. In addi-
tion to process_pointers, the entity class provides a
process_fields method that allows iterating over all
fields (not just pointer fields) of the class. The dump tool
can be configured to prevent structures such as unallo-
cated inode structures from being exported.

Type-Specific Corruption Tool This tool is a variant
of the dump tool that injects file-system corruption in a
type-specific manner [2], allowing us to test the robust-
ness of file systems and their tools. When we decide to
corrupt a field, we cannot simply modify its in-memory
value, since serialization is type-safe. For example, the

serializer will refuse to serialize a corrupted value that
violates its type constraints. Instead, corruption is per-
formed after a block is serialized but before it is written.

Free Space Tool This tool shows file-system fragmen-
tation by plotting a histogram of the size of free ex-
tents. The tool retrieves the metadata structures that
store free space information and processes them (e.g.,
block bitmaps for Ext4, extent items for Btrfs, and seg-
ment information table (SIT) for F2FS). This logic is im-
plemented using process_by_type (see Table 3) and
a custom visit function that processes all the retrieved
metadata structures. Code to traverse the file system and
parse intermediate structures is provided by our library.

File System Conversion Tool Converting an existing
file system into a file system of another type is a time-
consuming process, involving copying files to another
disk, reformatting the disk, and then copying the files
back to the new file system. In-place file system conver-
sion that updates file system metadata without moving
most file data can speed up the conversion dramatically.
While some such conversion tools exist,3 they are hard
to implement correctly and not generally available.

We have designed an in-place file system conversion
tool using the Spiffy framework. Such a conversion tool
requires detailed knowledge of the source and the des-
tination file systems, and is thus a challenging applica-
tion for our approach. In-place conversion involves sev-
eral steps. First, the file and directory related metadata,
such as inodes, extent mappings, and directory entries
of the source file system, are parsed into a standard for-
mat. Second, the free space in the source file system is
tracked. Third, if any source file data occupies blocks
that are statically allocated in the destination file system,
then those blocks are reallocated to the free space, and
the conversion aborted if sufficient free space is not avail-
able. Finally, the metadata for the destination file system
is created and written to disk. In our current tool, a power
failure during the last step would corrupt the source file
system. We plan to add failure atomicity in the future.

Our tool currently converts extent-based Ext4 file sys-
tems to log-structured F2FS file systems. The source
file system is read using a custom set of visitors that ef-
ficiently traverse the file system and create in-memory
copies of relevant metadata. For example, unused block
groups can be skipped while processing block group de-
scriptors. Next, we generate the free space list by reusing
components from the free space tool, and then removing
F2FS’s static metadata area from the list. Then, Ext4 ex-
tents in the F2FS metadata area are relocated to the free
space with their mappings updated. Finally, F2FS meta-
data is created from the in-memory copies and written to

3The convert utility converts FAT32 to NTFS [27], and updating to
iOS 10.3 upgrades the file system from HFS+ to APFS [28]

USENIX Association 16th USENIX Conference on File and Storage Technologies    97



disk, which involves allocation and pointer management,
requiring significant file-system-specific logic.

Fortunately, various pieces of the code can be reused
for different combinations of source and destination file
system when adapting new file systems. As an example,
only the code to copy Btrfs metadata from an existing
file system and to list its free space is required to support
the conversion from Btrfs to F2FS, since the in-memory
data structures are generic across file systems that sup-
port VFS. If the file system does not support VFS, suit-
able default values can be used, which would be helpful
for upgrading from a legacy file system such as FAT32.

Prioritized Block Layer Cache We have imple-
mented a file-system aware block layer cache based on
Bcache [20]. Our cache preferentially caches the files of
certain priority users, identified by the uid of the file.
This caching policy can dramatically improve workload
performance by improving the cache hit rate for priori-
tized workloads, as shown in previous work [26]. Bcache
uses an LRU replacement policy; in our implementation,
blocks belonging to priority users are given a second
chance and are only evicted if they return to the head
of the LRU list without being referenced.

We use a runtime interpretation module, described in
more detail in Section 5, to identify metadata blocks at
the block layer without any modifications to the file sys-
tem. We track the data extents that belong to file inodes
containing the uid of a priority user, so that we can pref-
erentially cache these extents. For Ext4, we use custom
visit functions to parse inodes and determine the prior-
ity extent nodes. Similarly, we parse the priority extent
nodes to determine the priority extent leaves, which con-
tain the priority data extents.

For Btrfs, the inodes and their file extent items may
not be placed close together (e.g., within the same B-
tree leaf block), and so parsing an inode object will not
provide information about its extents. Fortunately, the
key of a file extent item is its associated inode number,
making it easy to track the file extents of priority users.

5 Implementation

We implemented a compiler that parses Spiffy annota-
tions. The compiler generates the file system’s internal
representation in a symbol table, containing the defini-
tions of all the file system metadata, their annotations,
their fields (including type and symbolic name), and each
of their field’s annotations. Next, it detects errors such as
duplicate declarations or missing required arguments. Fi-
nally, the symbol table and compiler options are exported
for use by the compiler’s backend.

Spiffy’s backend generates C++ code for a file-system
specific metadata library using Jinja2 [22]. The library
can be compiled as either a user space library or as part of

a Linux kernel module. We linked our module, including
our generated library, into the Linux kernel by porting
some C++ standard containers to the kernel environment
and integrating the GNU g++ compiler into the kernel
build process, which required minor changes.

Every annotated structure is wrapped in a class that al-
lows introspection. Each field in the wrapped class can
refer to its name, type and size, and has a reference to the
containing structure. The generated library performs var-
ious types of error-checking operations. For example, the
parsing of offset fields ensures that objects do not cross
container boundaries, and that all variable-sized struc-
tures fit within their containers. These checks are essen-
tial if an application aims to handle file system corrup-
tion. When parsing does fail, an error code is propagated
to the caller of the parse or serialize function.

Address Spaces Annotation developers must imple-
ment the IO interface shown in Table 3. The Ext4 file
address space implementation for the Ext4IO class (see
Figure 5) requires fetching the file contents associated
with an inode number. For Btrfs, we currently support
the RAID address space for a single device, which only
allows metadata mirroring (RAID-1). For F2FS, we sup-
port the NID address space, which maps a NID (node id)
to a node block. The implementation involves a lookup
to see if a valid mapping entry is in the journal. If not,
the mapping is obtained from the node address table.

Runtime Interpretation Offline Spiffy applications
use variants of the file-system traversal algorithm in Fig-
ure 5. Spiffy also supports online file-system aware stor-
age applications via a kernel module that performs file
system interpretation at the block layer of the Linux ker-
nel using the generated libraries. These storage applica-
tions are typically difficult to write and error prone, since
manual parsing code is needed for each block type. How-
ever, our implementation only requires a small amount of
bootstrap code to support any annotated file system. The
rest of the code is file-system independent.

In offline applications, the fetch function reads data
from disk and parses the structure. The type of the struc-
ture is known from the pointer that is passed to the fetch
function. In contrast, for online interpretation, the file
system performs the read, and the application just needs
to parse it. The parse_by_type function in Table 3
allows parsing of arbitrary buffers and constructing the
corresponding containers, without the need for an IO ob-
ject to read data from disk. However, it needs to know
the type of the block before parsing is possible. Our run-
time interpretation depends on the fact that a pointer to a
metadata block must be read before the pointed-to block
is read. When a pointer is found during the parsing of a
block, the module tracks the type of the pointed-to block
so that its type is known when it is read.

98    16th USENIX Conference on File and Storage Technologies USENIX Association



Our module exports several functions, including
interpret_read and interpret_write, that need to
be placed in the I/O path to perform runtime interpreta-
tion. These functions operate on locked block buffers.
The module maintains a mapping between block num-
bers and their types. After intercepting a completed
read request, it checks whether a mapping exists, and
if so, it is a metadata block and it gets parsed. Next,
process_pointers is invoked with a visitor that adds
(or updates) all the pointers that are found in the block
into the mapping table. If a parsed block will be refer-
enced later (e.g., super block), we make a copy so that it
is available during subsequent parsing of structures that
depend on the value of its fields (e.g., parsing the Ext4 in-
ode block requires knowing the size of an inode, which is
in the super block). The local copy is atomically replaced
when a new version of the block is written to disk.

When the I/O operation is a write, the module needs to
determine the type of the written block. A statically allo-
cated block can be immediately parsed because its type
will not change. For example, most metadata blocks in
Ext4 are statically allocated. However, in Btrfs, the super
block is the only statically allocated metadata block. For
dynamically allocated blocks, the block must first be la-
beled as unknown and its contents cached, since its type
may either be unknown or have changed. Interpretation
for this block is deferred until it is referenced by a block
that is subsequently accessed (either read or written), and
whose type is known. At that point, the module will in-
terpret all unknown blocks that are referenced.

Since most dynamically-typed blocks are data blocks,
they should be discarded immediately to reduce mem-
ory overhead. For the Btrfs file system, this is relatively
easy because metadata blocks are self-identifying. For
Ext4, these blocks need to be temporarily buffered until
they can be interpreted. However, we use a heuristic for
Ext4 to quickly identify dynamically-typed blocks that
are definitely not metadata, to reduce the memory over-
head of deferred interpretation. The block is first parsed
as if it were a dynamically allocated block (e.g., a direc-
tory block or extent metadata block), and if the parsing
results in an error, then the block is assumed to be data
and discarded. This heuristic could be used in other file
systems as well because most file systems have a small
number of dynamically allocated metadata block types,
or their blocks are self-identifying.

The module currently relies on the file system to is-
sue trim operations to detect deallocation of blocks so
that stale entries can be removed from the mapping table.
Since file systems do not guarantee correct implementa-
tion of trim, the module additionally flushes out entries
for dynamically allocated blocks that have not been ac-
cessed recently. This works for a caching application,
but may lead to mis-classification for other runtime ap-

File System Line Count Annotated Structures

Ext4 491 113 15+10+4
Btrfs 556 151 27+4+1
F2FS 462 127 14+16+5

Table 4: File system structure annotation effort.

plications. Accurate classification can be implemented
by keeping the previous versions of blocks and compar-
ing the versions at transaction commit time. However, it
comes with a higher memory overhead [8].

6 Evaluation

In this section, we discuss the effort required to annotate
the structures of existing file systems, the effort required
to write Spiffy applications, and the robustness of Spiffy
libraries. We then evaluate the performance of our file-
system conversion tool and the file-system aware block-
layer caching mechanism.

6.1 Annotation Effort
Table 4 shows the effort required to correctly annotate
the Ext4, Btrfs and F2FS file systems. The second col-
umn shows the number of lines of code of existing on-
disk data structures in these file systems. The lines of
code count was obtained using cloc [6] to eliminate
comments and empty lines. The third column shows the
number of annotation lines. This number is less than one-
third of the total line count for all the file systems.

The last column is listed as A+B+C, with A showing
no modification to the data structure (other than adding
annotations), B showing the number of data structures
that were added, and C showing the number of data struc-
tures that needed to be modified. Structure declarations
needed to be added or modified for three reasons:

1. We break down structures that benefit from being
declared as conditionally inherited types. For ex-
ample, btrfs_file_extent_item is split into two
parts: the header and an optional footer, depending on
whether it contains inline data or extent information.

2. Simple structures such as Ext4 extent metadata
blocks, are not declared in the original source code.
However, for annotation purposes, they need to be ex-
plicitly declared. All of the added structures in Ext4
belong to this category.

3. Some data structures with a complex or backward-
compatible format require modifications to enable
proper annotation. For example, Ext4 inode retains its
Ext3 definition in the official header file even though
the i_block field now contains extent tree informa-
tion rather than block pointers. We redefined the Ext4
inode structure and replaced i_block with the extent
header followed by four extent entries.

USENIX Association 16th USENIX Conference on File and Storage Technologies    99



6.2 Developer Effort

Dump Tool: The file system dump tool includes a file-
system independent XML writer module, written in 565
lines of code. The main function for each file system is
written in 40 to 50 lines of code. The dump tool is helpful
for debugging issues with real file systems. In addition,
an expert can verify that the annotations are correct when
the output of the dump tool matches the expected con-
tents of the file system. Therefore, this tool has become
an integral part of our development process.
Type-Specific Corruptor: This tool is written in 455
lines of code, with less than 30 lines of code required for
the main function of each file system. The structure that
the user wants to corrupt is specified via the command
line and the tool uses process_by_type to find it, with-
out the need for file-system specific code.
Free Space Tool: The file system free space tool has
271 lines of file-system independent code. File-system
specific parts require 76 lines for Ext4, 77 lines for Btrfs,
and 194 lines for F2FS. F2FS requires more code due to
the complex format of its block allocation information.
Conversion Tool: The Spiffy file system conversion tool
framework is written in 504 lines of code. The code for
reading Ext4 takes 218 lines, the code to convert to the
F2FS file system requires 1760 lines, and the file-system
developer code for F2FS, which is reused in other ap-
plications such as the dump tool, consists of 383 lines.
We also wrote a manual converter tool that uses the
libext2fs [30] library to copy Ext4 metadata from the
source file system, and manually writes raw data to cre-
ate an F2FS file system. The manual converter has 223
lines of Ext4 code, and 2260 lines for the F2FS code.
While the two converters have similar number of lines
of code, the Spiffy converter has several other benefits.
For the source file system, the manual converter takes
advantage of the libext2fs library. Writing the code
to convert from a different source file system would re-
quire significant effort, and would require much more
code for a file system such as ZFS that lacks a similar
user-level library. On the destination side, the Spiffy con-
verter requires many file-system specific lines of code
to manually initialize each newly created object. How-
ever, Spiffy checks constraints on objects and uses the
create_container and save functions to create and
serialize objects in a type-safe manner, while the manual
converter writes raw data, which is error-prone, leading
to the types of bugs discussed in Section 2.
Prioritized Cache: The original Bcache code consisted
of 10518 lines of code. To implement prioritized caching
we added 289 lines to this code, which invoke our
generic runtime metadata interpretation framework, con-
sisting of 2158 lines of code. This framework provides
hooks to specify file-system specific policies. Our Ext4-

specific policy requires 111 lines of code, and the Btrfs-
specific policy requires 134 lines of code. Currently,
we have not implemented prioritized caching for F2FS,
which would require tracking NAT entries, similar to
how we track inode numbers for Btrfs to find file extents.

6.3 Corruption Experiments
We use our type-specific corruption tool to evaluate the
robustness of Spiffy generated libraries. The experiment
fills a 128MB file system image with 12,000 files and
some directories, then clobbers a chosen field in a spe-
cific metadata structure (e.g., one of the inode structures)
to create a corrupted file system image. We corrupt each
field in each type of metadata structure three times, twice
to a random value and once to zero.

The Spiffy dump tool was able to generate correctly
formatted XML files in the face of arbitrary single-field
corruptions for all of these images. When corruption is
detected during the parsing of a container or a pointer
fetch (i.e., pointer address is out-of-bound or fails a
placement constraint), an error is printed and the pro-
gram stops the traversal.

Table 5 describes the crashes we found when we
ran existing tools on the same corrupted images. For
dumpe2fs (dump tool for Ext4) v1.42.13, we found a
single crash when the s_creator_os field of the su-
per block is corrupted. For dump.f2fs v1.6.1-1, we ob-
served 5 instances of segmentation faults. Three of the
crashes were due to corruption in the super block, and
one crash each was detected for the summary block and
inode structures. We were unable to trigger any crash-
related bugs in btrfs-debug-tree v4.4.

These results are not unexpected since F2FS is a rela-
tively young file system. Btrfs uses metadata checksum-
ming to detect corruption, and thus requires corruption
to be injected before checksum generation to fully test
the robustness of its dump tool. Lastly, dumpe2fs does
not traverse the full file system metadata, and so does not
encounter most of the metadata corruption. Our Spiffy
dump tool is both more complete and more robust than
dumpe2fs, without requiring significant testing effort.

We also tried an extensive set of random corruption ex-
periments, and none of the existing tools crashed, show-
ing that our type-specific corruptor is a useful tool for
testing the robustness of these applications.

6.4 File System Conversion Performance
We compare the time it takes to perform copy-based con-
version, versus using the Spiffy-based and the manually
written in-place file-system conversion tools. The results
are shown in Table 6. The experiments are run on an
Intel 510 Series SATA SSD. We create the file set using
Filebench 1.5-a3 [32] in an Ext4 partition on the SSD,

100    16th USENIX Conference on File and Storage Technologies USENIX Association



Tool Name Structure Field Description

dumpe2fs super block s_creator_os index out of bound error during OS name lookup
dump.f2fs super block log_blocks_per_seg index out of bound error while building nat bitmap

super block segment_count_main null pointer dereference after calloc fails
super block cp_blkaddr double free error during error handling (no valid checkpoint)

summary block n_nats index out of bound error during nid lookup
inode i_namelen index out of bound error when adding null character to end of name

Table 5: List of segmentation faults found during type-specific corruption experiments.

# files Copy Converter Manual Conv. Spiffy Conv.

20000 188.2±3.7s 6.6±0.5s 7.0±0.2s
1000 192.7±2.3s 3.3±0.1s 3.8±0.0s
100 195.1±0.2s 3.3±0.1s 3.7±0.1s

Table 6: Time required for each technique to convert
from Ext4 to F2FS for different number of files.

and then convert the partition to F2FS. The 20K file set
uses the msnfs file size distribution with the largest file
size up to 1GB. The rest of the file sets have progres-
sively fewer small files. All file sets have a total size of
16GB. For the copy converter, we run tar -aR at the
root of the SSD partition and save the tar file on a sepa-
rate local disk. We then reformat the SSD partition and
extract the file set back into the partition.

The copy converter requires transferring two full
copies of the file set, and so it takes 30x to 50x longer
than using the conversion tools, which only need to move
data blocks out of F2FS’s static metadata area and then
create the corresponding F2FS metadata. Both conver-
sion tools take more time with larger file sets since they
need to handle the conversion of more file system meta-
data. The library-assisted conversion tool performs rea-
sonably compared to its manually-written counterpart,
with at most a 16.7% overhead for the added type-safety
protection that the library offers.

6.5 Prioritized Cache Performance
We measure the performance of our prioritized block
layer cache (see Section 4), and compare it against LRU
caching with one or two instances of the same workload.

Our experimental setup includes a client machine con-
nected to a storage server over a 10Gb Ethernet using
the iSCSI protocol. The storage server runs Linux 3.11.2
and has 4 Intel Processor E7-4830 CPUs for a total of 32
cores, 256GB of memory and a software RAID-6 vol-
ume consisting of 13 Hitachi HDS721010 SATA2 7200
RPM disks. The client machine runs Linux 4.4.0 with
Intel Processor E5-2650, and an Intel 510 Series SATA
SSD that is used for client-side caching. To mimic the
memory-to-cache ratio of real-world storage servers, we
limit the memory on the client to 4GB and use 8GB of
the SSD for write-back caching. The RAID partition is
formatted with either the Ext4 or Btrfs file system and
is used as the primary storage device. To avoid any

0 1000 2000 3000

Fileserver A + Fileserver B, A is preferred

Fileserver A + Fileserver B, no preference

Fileserver A, alone

Fileserver A + Fileserver B, A is preferred

Fileserver A + Fileserver B, no preference

Fileserver A, alone

ops/sFileserver A Fileserver B

Btrfs

Ext4

Figure 6: Throughput of prioritized caching over LRU
caching with one or two file servers for Ext4 and Btrfs.

scheduling related effects, the NOOP I/O scheduler is
used in all cases for both the caching and primary device.

We use a pair of identical Filebench fileserver work-
loads to simulate a shared hosting scenario with two
users where one requires higher storage performance
than the other. We generate a total file set size of 8GB
with an average file size of 128KB, for each workload.
The fileserver personality performs a series of create,
write, append, read and delete of random files throughout
the experiment. Filebench reports performance metrics
every 60 seconds over a period of 90 minutes. Perfor-
mance initially fluctuates as the cache fills, therefore we
present the average throughput over the last 60 minutes
of the experiment, after performance stabilizes.

Figure 6 shows the average throughput for each of the
experiments in operations per second. The error bars
show 95% confidence intervals. First, we establish the
baseline performance of a single fileserver instance run-
ning alone, which has a cache hit ratio of 64% and 54%
for Ext4 and Btrfs, respectively. Next, we run two in-
stances of fileserver to observe the effect of cache con-
tention. We see a drastic reduction in cache hit ratio to
23% and 24% for Ext4 and Btrfs, respectively. Both
fileservers have similar performance, which is between
2.3x and 2.7x less than when running alone. When we
apply preferential caching to the files used by fileserver
A, however, its throughput improves by 60% over non-
prioritized LRU caching when running concurrently with
fileserver B, with the overall cache hit ratio improving
to 46% and 53% for Ext4 and Btrfs, respectively. Pri-
oritized caching also improves the aggregate through-
put of the system by 14% to 22%. Giving priority to
one of the two jobs implicitly reduces cache contention.

USENIX Association 16th USENIX Conference on File and Storage Technologies    101



These results show that storage applications using our
generated library can provide reasonable performance
improvements without changing the file system code.

7 Related Work

A large body of work has focused on storage-layer ap-
plications that perform file-system specific processing
for improving performance or reliability. Semantically-
smart disks [24] used probing to gather detailed knowl-
edge of file system behavior, allowing functionality or
performance to be enhanced transparently at the block
layer. The probing was designed for Ext4-like file sys-
tems and would likely require changes for copy-on-write
and log-structured file systems. Spiffy annotations avoid
the need for probing, helping provide accurate block type
information based on runtime interpretation.

I/O shepherding [12] improves reliability by using
file structure information to implement checksumming
and replication. Block type information is provided to
the storage layer I/O shepherd by modifying the file
system and the buffer-cache code. Our approach en-
ables I/O shepherding without requiring these changes.
Also, unlike I/O shepherding, Spiffy allows interpreting
block contents, enabling more powerful policies, such as
caching the files of specific users.

A type-safe disk extends the disk interface by expos-
ing primitives for block allocation and pointer relation-
ships [23], which helps enforce invariants such as pre-
venting access to unallocated blocks, but this interface
requires extensive file system modifications. We believe
that our runtime interpretation approach allows enforcing
such type-safety invariants on existing file systems.

Serialization of structured data has been explored
through interface languages such as ASN.1 [25] and Pro-
tocol Buffers [31], which allow programmers to define
their data structures so that marshaling routines can be
generated for them. However, the binary serialization
format for the structures is specified by the protocol and
not under the control of the programmer. As a result,
these languages cannot be used to interpret the existing
binary format of a file system.

Data description languages such as Hammer [21] and
PADS [7] allow fine-grained byte-level data formats to
be specified. However, they have limited support for non-
sequential processing, and thus their parsers cannot inter-
pret file system I/O, where a graph traversal is required
rather than a sequential scan. Furthermore, with online
interpretation, this traversal is performed on a small part
of the graph, and not on the entire data.

Nail [3] shares many goals with our work. Its grammar
provides the ability to specify arbitrarily computed fields.
It also supports non-linear parsing, but its scope is lim-
ited to a single packet or file, and so it does not support

references to external objects. Our annotation language
overcomes this limitation by explicitly annotating point-
ers, which defines how file system metadata reference
each other. We also provide support for address spaces,
so that address values can be mapped to user-specified
physical locations on disk.

Several projects have explored C extensions for ex-
pressing additional semantic information [19, 35, 29].
CCured [19] enables type and memory safety, and the
Deputy Type System [35] prevents out-of-bound array
errors. Both projects annotate source code, perform
static analysis, and add runtime checks, but they are de-
signed for in-memory structures.

Formal specification approaches for file systems [1, 5]
require building a new file system from scratch, while
our work focuses on building tools for existing file sys-
tems. Chen et al. [5] use logical address spaces as ab-
stractions for writing higher-level file system specifica-
tions. This idea inspired our use of an address space type
for specifying pointers. Another method for specifying
pointers is by defining paths that enable traversing the
metadata tree to locate a metadata object, such as finding
the inode structure from an inode number [14, 10]. These
approaches focus on the correctness of file-system oper-
ations at the virtual file system layer, whereas our goal is
to specify the physical structures of file systems.

8 Conclusion

Spiffy is an annotation language for specifying the on-
disk file system data structures. File system developers
annotate their data structures using Spiffy, which enables
generating a library that allows parsing and traversing file
system data structures correctly.

We have shown the generality of our approach by an-
notating three vastly different file systems. The anno-
tated file system code serves as detailed documentation
for the metadata structures and the relationships between
them. File-system aware storage applications can use the
Spiffy libraries to improve their resilience against pars-
ing bugs, and to reduce the overall programming effort
needed for supporting file-system specific logic in these
applications. Our evaluation suggests that applications
using the generated libraries perform reasonably well.
We believe our approach will enable interesting applica-
tions that require an understanding of storage structures.

Acknowledgements

We thank the anonymous reviewers and our shepherd,
André Brinkmann, for their valuable feedback. We spe-
cially thank Michael Stumm, Ding Yuan, Mike Qin, and
Peter Goodman for their insightful suggestions. This
work was supported by NSERC Discovery.

102    16th USENIX Conference on File and Storage Technologies USENIX Association



References
[1] AMANI, S., RYZHYK, L., AND MURRAY, T. Towards a fully

verified file system, 2012. EuroSys Doctoral Workshop 2012.

[2] BAIRAVASUNDARAM, L. N., RUNGTA, M., AGRAWA, N.,
ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND
SWIFT, M. M. Analyzing the effects of disk-pointer corrup-
tion. In 2008 IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC (DSN) (2008), IEEE,
pp. 502–511.

[3] BANGERT, J., AND ZELDOVICH, N. Nail: A practical tool for
parsing and generating data formats. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
14) (2014), pp. 615–628.

[4] BUCKEYE, B., AND LISTON, K. Recovering deleted files in
linux. http://collaboration.cmc.ec.gc.ca/science/
rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.
htm, 2006.

[5] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using crash hoare
logic for certifying the fscq file system. In Proceedings of the
25th Symposium on Operating Systems Principles (2015), ACM,
pp. 18–37.

[6] DANIAL, A. Cloc–count lines of code. Open source (2009).
http://cloc.sourceforge.net/.

[7] FISHER, K., AND WALKER, D. The pads project: an overview.
In Proceedings of the 14th International Conference on Database
Theory (2011), ACM, pp. 11–17.

[8] FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BENJAMIN,
S., GOEL, A., AND BROWN, A. D. Recon: Verifying file system
consistency at runtime. ACM Transactions on Storage 8, 4 (Dec.
2012), 15:1–15:29.

[9] GAMMA, E. Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[10] GARDNER, P., NTZIK, G., AND WRIGHT, A. Local reasoning
for the posix file system. In European Symposium on Program-
ming Languages and Systems (2014), Springer, pp. 169–188.

[11] GEDAK, C. Manage Partitions with GParted How-to. Packt Pub-
lishing Ltd, 2012.

[12] GUNAWI, H. S., PRABHAKARAN, V., KRISHNAN, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Improv-
ing file system reliability with I/O shepherding. In Proc. of
the Symposium on Operating Systems Principles (SOSP) (2007),
pp. 293–306.

[13] GUNAWI, H. S., RAJIMWALE, A., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. SQCK: A declarative file sys-
tem checker. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Dec. 2008).

[14] HESSELINK, W. H., AND LALI, M. I. Formalizing a hierarchical
file system. Electronic Notes in Theoretical Computer Science
259 (2009), 67–85.

[15] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2fs: A new file
system for flash storage. In 13th USENIX Conference on File and
Storage Technologies (FAST 15) (2015), pp. 273–286.

[16] LU, L., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
AND LU, S. A study of Linux file system evolution. In Proc.
of the USENIX Conference on File and Storage Technologies
(FAST) (Feb. 2013).

[17] MA, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. ffsck: The fast file system checker.
In Proc. of the USENIX Conference on File and Storage Tech-
nologies (FAST) (Feb. 2013).

[18] MESNIER, M., CHEN, F., LUO, T., AND AKERS, J. B. Differen-
tiated storage services. In Proc. of the Symposium on Operating
Systems Principles (SOSP) (2011), pp. 57–70.

[19] NECULA, G. C., MCPEAK, S., AND WEIMER, W. Ccured:
type-safe retrofitting of legacy code. In Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (New York, NY, USA, 2002), POPL ’02, ACM,
pp. 128–139.

[20] OVERSTREET, K. Linux bcache, Aug. 2016. https://bcache.
evilpiepirate.org/.

[21] PATTERSON, M., AND HIRSCH, D. Hammer parser generator,
march 2014. https://github.com/UpstandingHackers/
hammer.

[22] RONACHER, A. Jinja2 documentation, 2011.

[23] SIVATHANU, G., SUNDARARAMAN, S., AND ZADOK, E. Type-
safe disks. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2006), pp. 15–28.

[24] SIVATHANU, M., PRABHAKARAN, V., POPOVICI, F. I.,
DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Semantically-smart disk systems. In USENIX
Conference on File and Storage Technologies (FAST) (2003),
pp. 73–88.

[25] STEEDMAN, D. Abstract syntax notation one (ASN. 1): the tuto-
rial and reference. Technology appraisals, 1993.

[26] STEFANOVICI, I., THERESKA, E., O’SHEA, G., SCHROEDER,
B., BALLANI, H., KARAGIANNIS, T., ROWSTRON, A., AND
TALPEY, T. Software-defined caching: Managing caches in
multi-tenant data centers. In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing (2015), ACM, pp. 174–181.

[27] TECHNET, M. How to convert fat disks to ntfs.
https://technet.microsoft.com/en-us/library/
bb456984.aspx.

[28] TOM WARREN. Apple is upgrading millions of
iOS devices to a new modern file system today.
https://www.theverge.com/2017/3/27/15076244/
apple-file-system-apfs-ios-10-3-features. Ac-
cessed: 2017-03-27.

[29] TORVALDS, L., TRIPLETT, J., AND LI, C. Sparse–a semantic
parser for c. see http://sparse.wiki.kernel.org (2007).

[30] TS’O, T. E2fsprogs: Ext2/3/4 filesystem utilities. http://
e2fsprogs.sourceforge.net/, 2017.

[31] VARDA, K. Protocol buffers: Google’s data interchange for-
mat. Google Open Source Blog, Available at least as early as
Jul (2008).

[32] WILSON, A. The new and improved filebench. In Proceed-
ings of 6th USENIX Conference on File and Storage Technologies
(2008). https://github.com/filebench/filebench/.

[33] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. ACM
Transactions on Computer Systems (TOCS) 24, 4 (2006), 393–
423.

[34] ZALEWSKI, M. American fuzzy lop. http://lcamtuf.
coredump.cx/afl/, 2016.

[35] ZHOU, F., CONDIT, J., ANDERSON, Z., BAGRAK, I., EN-
NALS, R., HARREN, M., NECULA, G., AND BREWER, E.
Safedrive: Safe and recoverable extensions using language-based
techniques. In Proceedings of the 7th symposium on Operating
systems design and implementation (2006), USENIX Associa-
tion, pp. 45–60.

USENIX Association 16th USENIX Conference on File and Storage Technologies    103

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.htm
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.htm
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.htm
http://cloc.sourceforge.net/
https://bcache.evilpiepirate.org/
https://bcache.evilpiepirate.org/
https://github.com/UpstandingHackers/hammer
https://github.com/UpstandingHackers/hammer
https://technet.microsoft.com/en-us/library/bb456984.aspx
https://technet.microsoft.com/en-us/library/bb456984.aspx
https://www.theverge.com/2017/3/27/15076244/apple-file-system-apfs-ios-10-3-features
https://www.theverge.com/2017/3/27/15076244/apple-file-system-apfs-ios-10-3-features
http://e2fsprogs.sourceforge.net/
http://e2fsprogs.sourceforge.net/
https://github.com/filebench/filebench/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/



