Balanced vertex-orderings of graphs
Discrete Applied Mathematics, vol. 148, no. 1, pp. 27-48, April 2005
Abstract
In this paper we consider the problem of determining a balanced ordering of the vertices of a graph; that is, the neighbors of each vertex v are as evenly distributed to the left and right of v as possible. This problem, which has applications in graph drawing for example, is shown to be NP hard, and remains NP-hard for bipartite simple graphs with maximum degree six.We then describe and analyze a number of methods for determining a balanced vertex-ordering, obtaining optimal orderings for directed acyclic graphs, trees, and graphs with maximum degree three. For undirected graphs, we obtain a 13/8-approximation algorithm. Finally we consider the problem of determining a balanced vertex-ordering of a bipartite graph with a fixed ordering of one bipartition. When only the imbalances of the fixed vertices count, this problem is shown to be NP-hard. On the other hand, we describe an optimal linear time algorithm when the final imbalances of all vertices count.We obtain a linear time algorithm to compute an optimal vertex-ordering of a bipartite graph with one bipartition of constant size.
Audio

Bibtex
